SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-mpnet-base-v2
  • Maximum Sequence Length: 384 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("jonny9f/food_embeddings")
# Run inference
sentences = [
    'Beef Top Round, lean raw',
    'Luncheon Slices, meatless',
    'Pasta Sauce, spaghetti/marinara ready-to-serve',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.9913
spearman_cosine 0.9868

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,200,000 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 4 tokens
    • mean: 10.2 tokens
    • max: 28 tokens
    • min: 4 tokens
    • mean: 9.65 tokens
    • max: 23 tokens
    • min: 0.0
    • mean: 0.26
    • max: 0.92
  • Samples:
    sentence_0 sentence_1 label
    Beef top round roast, boneless lean select cooked Blueberries, canned wild in heavy syrup drained 0.21440656185150148
    Nance, frozen unsweetened Soymilk, unsweetened 0.3654276132583618
    Drops - Lemonade Pickle relish, sweet 0.30108280181884767
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 1
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Click to expand
Epoch Step Training Loss validation_spearman_cosine
0.0133 500 0.0031 -
0.0267 1000 0.0028 -
0.04 1500 0.0025 -
0.0533 2000 0.0024 -
0.0667 2500 0.0023 -
0.08 3000 0.0022 -
0.0933 3500 0.0021 -
0.1067 4000 0.002 -
0.12 4500 0.002 -
0.1333 5000 0.0019 -
0.1467 5500 0.0018 -
0.16 6000 0.0018 -
0.1733 6500 0.0017 -
0.1867 7000 0.0017 -
0.2 7500 0.0016 -
0.2133 8000 0.0016 -
0.2267 8500 0.0016 -
0.24 9000 0.0015 -
0.2533 9500 0.0015 -
0.2667 10000 0.0015 -
0.28 10500 0.0015 -
0.2933 11000 0.0015 -
0.3067 11500 0.0014 -
0.32 12000 0.0014 -
0.3333 12500 0.0013 -
0.3467 13000 0.0013 -
0.36 13500 0.0013 -
0.3733 14000 0.0013 -
0.3867 14500 0.0012 -
0.4 15000 0.0012 -
0.4133 15500 0.0012 -
0.4267 16000 0.0012 -
0.44 16500 0.0012 -
0.4533 17000 0.0012 -
0.4667 17500 0.0011 -
0.48 18000 0.0011 -
0.4933 18500 0.0011 -
0.5067 19000 0.0011 -
0.52 19500 0.0011 -
0.5333 20000 0.0011 -
0.5467 20500 0.0011 -
0.56 21000 0.001 -
0.5733 21500 0.001 -
0.5867 22000 0.001 -
0.6 22500 0.001 -
0.6133 23000 0.001 -
0.6267 23500 0.001 -
0.64 24000 0.0009 -
0.6533 24500 0.0009 -
0.6667 25000 0.0009 -
0.68 25500 0.0009 -
0.6933 26000 0.0009 -
0.7067 26500 0.0009 -
0.72 27000 0.0009 -
0.7333 27500 0.0009 -
0.7467 28000 0.0009 -
0.76 28500 0.0008 -
0.7733 29000 0.0008 -
0.7867 29500 0.0008 -
0.8 30000 0.0008 -
0.8133 30500 0.0008 -
0.8267 31000 0.0008 -
0.84 31500 0.0008 -
0.8533 32000 0.0008 -
0.8667 32500 0.0008 -
0.88 33000 0.0007 -
0.8933 33500 0.0007 -
0.9067 34000 0.0008 -
0.92 34500 0.0007 -
0.9333 35000 0.0007 -
0.9467 35500 0.0007 -
0.96 36000 0.0007 -
0.9733 36500 0.0007 -
0.9867 37000 0.0007 -
1.0 37500 0.0007 0.9799
0.0133 500 0.0009 -
0.0267 1000 0.0011 -
0.04 1500 0.0011 -
0.0533 2000 0.001 -
0.0667 2500 0.001 -
0.08 3000 0.001 -
0.0933 3500 0.001 -
0.1067 4000 0.001 -
0.12 4500 0.001 -
0.1333 5000 0.001 -
0.1467 5500 0.001 -
0.16 6000 0.0009 -
0.1733 6500 0.0009 -
0.1867 7000 0.0009 -
0.2 7500 0.0009 -
0.2133 8000 0.001 -
0.2267 8500 0.0009 -
0.24 9000 0.0009 -
0.2533 9500 0.0009 -
0.2667 10000 0.0008 -
0.28 10500 0.0009 -
0.2933 11000 0.0008 -
0.3067 11500 0.0008 -
0.32 12000 0.0008 -
0.3333 12500 0.0008 -
0.3467 13000 0.0008 -
0.36 13500 0.0008 -
0.3733 14000 0.0008 -
0.3867 14500 0.0008 -
0.4 15000 0.0008 -
0.4133 15500 0.0007 -
0.4267 16000 0.0007 -
0.44 16500 0.0008 -
0.4533 17000 0.0007 -
0.4667 17500 0.0007 -
0.48 18000 0.0007 -
0.4933 18500 0.0007 -
0.5067 19000 0.0007 -
0.52 19500 0.0007 -
0.5333 20000 0.0007 -
0.5467 20500 0.0007 -
0.56 21000 0.0007 -
0.5733 21500 0.0006 -
0.5867 22000 0.0007 -
0.6 22500 0.0006 -
0.6133 23000 0.0006 -
0.6267 23500 0.0006 -
0.64 24000 0.0006 -
0.6533 24500 0.0006 -
0.6667 25000 0.0006 -
0.68 25500 0.0006 -
0.6933 26000 0.0006 -
0.7067 26500 0.0006 -
0.72 27000 0.0006 -
0.7333 27500 0.0006 -
0.7467 28000 0.0006 -
0.76 28500 0.0005 -
0.7733 29000 0.0005 -
0.7867 29500 0.0006 -
0.8 30000 0.0005 -
0.8133 30500 0.0005 -
0.8267 31000 0.0005 -
0.84 31500 0.0005 -
0.8533 32000 0.0005 -
0.8667 32500 0.0005 -
0.88 33000 0.0005 -
0.8933 33500 0.0005 -
0.9067 34000 0.0005 -
0.92 34500 0.0005 -
0.9333 35000 0.0005 -
0.9467 35500 0.0005 -
0.96 36000 0.0005 -
0.9733 36500 0.0005 -
0.9867 37000 0.0005 -
1.0 37500 0.0005 0.9850
0.0133 500 0.0004 -
0.0267 1000 0.0005 -
0.04 1500 0.0005 -
0.0533 2000 0.0005 -
0.0667 2500 0.0005 -
0.08 3000 0.0005 -
0.0933 3500 0.0005 -
0.1067 4000 0.0004 -
0.12 4500 0.0004 -
0.1333 5000 0.0004 -
0.1467 5500 0.0004 -
0.16 6000 0.0004 -
0.1733 6500 0.0004 -
0.1867 7000 0.0004 -
0.2 7500 0.0004 -
0.2133 8000 0.0004 -
0.2267 8500 0.0004 -
0.24 9000 0.0004 -
0.2533 9500 0.0004 -
0.2667 10000 0.0004 -
0.28 10500 0.0004 -
0.2933 11000 0.0004 -
0.3067 11500 0.0004 -
0.32 12000 0.0004 -
0.3333 12500 0.0004 -
0.3467 13000 0.0004 -
0.36 13500 0.0004 -
0.3733 14000 0.0004 -
0.3867 14500 0.0004 -
0.4 15000 0.0004 -
0.4133 15500 0.0004 -
0.4267 16000 0.0004 -
0.44 16500 0.0004 -
0.4533 17000 0.0004 -
0.4667 17500 0.0004 -
0.48 18000 0.0004 -
0.4933 18500 0.0004 -
0.5067 19000 0.0004 -
0.52 19500 0.0004 -
0.5333 20000 0.0004 -
0.5467 20500 0.0004 -
0.56 21000 0.0004 -
0.5733 21500 0.0004 -
0.5867 22000 0.0004 -
0.6 22500 0.0004 -
0.6133 23000 0.0004 -
0.6267 23500 0.0004 -
0.64 24000 0.0004 -
0.6533 24500 0.0004 -
0.6667 25000 0.0004 -
0.68 25500 0.0004 -
0.6933 26000 0.0004 -
0.7067 26500 0.0004 -
0.72 27000 0.0004 -
0.7333 27500 0.0004 -
0.7467 28000 0.0004 -
0.76 28500 0.0004 -
0.7733 29000 0.0004 -
0.7867 29500 0.0004 -
0.8 30000 0.0004 -
0.8133 30500 0.0004 -
0.8267 31000 0.0004 -
0.84 31500 0.0004 -
0.8533 32000 0.0004 -
0.8667 32500 0.0004 -
0.88 33000 0.0004 -
0.8933 33500 0.0004 -
0.9067 34000 0.0004 -
0.92 34500 0.0004 -
0.9333 35000 0.0004 -
0.9467 35500 0.0004 -
0.96 36000 0.0004 -
0.9733 36500 0.0004 -
0.9867 37000 0.0004 -
1.0 37500 0.0004 0.9868

Framework Versions

  • Python: 3.11.3
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.0
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
59
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jonny9f/food_embeddings

Finetuned
(208)
this model

Evaluation results