food_embeddings / README.md
jonny9f's picture
Upload food embeddings model
02239ea verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1200000
  - loss:CosineSimilarityLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
  - source_sentence: Mutton, roasted
    sentences:
      - Imagine Creamy Butternut Squash Soup
      - Perrier Water, bottled
      - Crackers, whole-wheat
  - source_sentence: Beef Chuck Mock Tender Steak, lean and fat raw
    sentences:
      - Lamb, Australian leg roasted, bone-in
      - Chicken wing, meat and skin, cooked fried flour
      - Peaches, canned in heavy syrup
  - source_sentence: Squash, zucchini baby raw
    sentences:
      - Dandelion greens, cooked with salt
      - Beets, pickled canned
      - Cod, Atlantic canned
  - source_sentence: Veggie Meatballs
    sentences:
      - Salt, iodized
      - Sweet and Sour Sauce, ready-to-serve
      - Salt pork, raw
  - source_sentence: Beef Top Round, lean raw
    sentences:
      - Ravioli, meat-filled with tomato or meat sauce canned
      - Pasta Sauce, spaghetti/marinara ready-to-serve
      - Luncheon Slices, meatless
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
model-index:
  - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: validation
          type: validation
        metrics:
          - type: pearson_cosine
            value: 0.9913128359649296
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.9868170667730207
            name: Spearman Cosine

SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-mpnet-base-v2
  • Maximum Sequence Length: 384 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("jonny9f/food_embeddings")
# Run inference
sentences = [
    'Beef Top Round, lean raw',
    'Luncheon Slices, meatless',
    'Pasta Sauce, spaghetti/marinara ready-to-serve',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.9913
spearman_cosine 0.9868

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,200,000 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 4 tokens
    • mean: 10.2 tokens
    • max: 28 tokens
    • min: 4 tokens
    • mean: 9.65 tokens
    • max: 23 tokens
    • min: 0.0
    • mean: 0.26
    • max: 0.92
  • Samples:
    sentence_0 sentence_1 label
    Beef top round roast, boneless lean select cooked Blueberries, canned wild in heavy syrup drained 0.21440656185150148
    Nance, frozen unsweetened Soymilk, unsweetened 0.3654276132583618
    Drops - Lemonade Pickle relish, sweet 0.30108280181884767
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 1
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Click to expand
Epoch Step Training Loss validation_spearman_cosine
0.0133 500 0.0031 -
0.0267 1000 0.0028 -
0.04 1500 0.0025 -
0.0533 2000 0.0024 -
0.0667 2500 0.0023 -
0.08 3000 0.0022 -
0.0933 3500 0.0021 -
0.1067 4000 0.002 -
0.12 4500 0.002 -
0.1333 5000 0.0019 -
0.1467 5500 0.0018 -
0.16 6000 0.0018 -
0.1733 6500 0.0017 -
0.1867 7000 0.0017 -
0.2 7500 0.0016 -
0.2133 8000 0.0016 -
0.2267 8500 0.0016 -
0.24 9000 0.0015 -
0.2533 9500 0.0015 -
0.2667 10000 0.0015 -
0.28 10500 0.0015 -
0.2933 11000 0.0015 -
0.3067 11500 0.0014 -
0.32 12000 0.0014 -
0.3333 12500 0.0013 -
0.3467 13000 0.0013 -
0.36 13500 0.0013 -
0.3733 14000 0.0013 -
0.3867 14500 0.0012 -
0.4 15000 0.0012 -
0.4133 15500 0.0012 -
0.4267 16000 0.0012 -
0.44 16500 0.0012 -
0.4533 17000 0.0012 -
0.4667 17500 0.0011 -
0.48 18000 0.0011 -
0.4933 18500 0.0011 -
0.5067 19000 0.0011 -
0.52 19500 0.0011 -
0.5333 20000 0.0011 -
0.5467 20500 0.0011 -
0.56 21000 0.001 -
0.5733 21500 0.001 -
0.5867 22000 0.001 -
0.6 22500 0.001 -
0.6133 23000 0.001 -
0.6267 23500 0.001 -
0.64 24000 0.0009 -
0.6533 24500 0.0009 -
0.6667 25000 0.0009 -
0.68 25500 0.0009 -
0.6933 26000 0.0009 -
0.7067 26500 0.0009 -
0.72 27000 0.0009 -
0.7333 27500 0.0009 -
0.7467 28000 0.0009 -
0.76 28500 0.0008 -
0.7733 29000 0.0008 -
0.7867 29500 0.0008 -
0.8 30000 0.0008 -
0.8133 30500 0.0008 -
0.8267 31000 0.0008 -
0.84 31500 0.0008 -
0.8533 32000 0.0008 -
0.8667 32500 0.0008 -
0.88 33000 0.0007 -
0.8933 33500 0.0007 -
0.9067 34000 0.0008 -
0.92 34500 0.0007 -
0.9333 35000 0.0007 -
0.9467 35500 0.0007 -
0.96 36000 0.0007 -
0.9733 36500 0.0007 -
0.9867 37000 0.0007 -
1.0 37500 0.0007 0.9799
0.0133 500 0.0009 -
0.0267 1000 0.0011 -
0.04 1500 0.0011 -
0.0533 2000 0.001 -
0.0667 2500 0.001 -
0.08 3000 0.001 -
0.0933 3500 0.001 -
0.1067 4000 0.001 -
0.12 4500 0.001 -
0.1333 5000 0.001 -
0.1467 5500 0.001 -
0.16 6000 0.0009 -
0.1733 6500 0.0009 -
0.1867 7000 0.0009 -
0.2 7500 0.0009 -
0.2133 8000 0.001 -
0.2267 8500 0.0009 -
0.24 9000 0.0009 -
0.2533 9500 0.0009 -
0.2667 10000 0.0008 -
0.28 10500 0.0009 -
0.2933 11000 0.0008 -
0.3067 11500 0.0008 -
0.32 12000 0.0008 -
0.3333 12500 0.0008 -
0.3467 13000 0.0008 -
0.36 13500 0.0008 -
0.3733 14000 0.0008 -
0.3867 14500 0.0008 -
0.4 15000 0.0008 -
0.4133 15500 0.0007 -
0.4267 16000 0.0007 -
0.44 16500 0.0008 -
0.4533 17000 0.0007 -
0.4667 17500 0.0007 -
0.48 18000 0.0007 -
0.4933 18500 0.0007 -
0.5067 19000 0.0007 -
0.52 19500 0.0007 -
0.5333 20000 0.0007 -
0.5467 20500 0.0007 -
0.56 21000 0.0007 -
0.5733 21500 0.0006 -
0.5867 22000 0.0007 -
0.6 22500 0.0006 -
0.6133 23000 0.0006 -
0.6267 23500 0.0006 -
0.64 24000 0.0006 -
0.6533 24500 0.0006 -
0.6667 25000 0.0006 -
0.68 25500 0.0006 -
0.6933 26000 0.0006 -
0.7067 26500 0.0006 -
0.72 27000 0.0006 -
0.7333 27500 0.0006 -
0.7467 28000 0.0006 -
0.76 28500 0.0005 -
0.7733 29000 0.0005 -
0.7867 29500 0.0006 -
0.8 30000 0.0005 -
0.8133 30500 0.0005 -
0.8267 31000 0.0005 -
0.84 31500 0.0005 -
0.8533 32000 0.0005 -
0.8667 32500 0.0005 -
0.88 33000 0.0005 -
0.8933 33500 0.0005 -
0.9067 34000 0.0005 -
0.92 34500 0.0005 -
0.9333 35000 0.0005 -
0.9467 35500 0.0005 -
0.96 36000 0.0005 -
0.9733 36500 0.0005 -
0.9867 37000 0.0005 -
1.0 37500 0.0005 0.9850
0.0133 500 0.0004 -
0.0267 1000 0.0005 -
0.04 1500 0.0005 -
0.0533 2000 0.0005 -
0.0667 2500 0.0005 -
0.08 3000 0.0005 -
0.0933 3500 0.0005 -
0.1067 4000 0.0004 -
0.12 4500 0.0004 -
0.1333 5000 0.0004 -
0.1467 5500 0.0004 -
0.16 6000 0.0004 -
0.1733 6500 0.0004 -
0.1867 7000 0.0004 -
0.2 7500 0.0004 -
0.2133 8000 0.0004 -
0.2267 8500 0.0004 -
0.24 9000 0.0004 -
0.2533 9500 0.0004 -
0.2667 10000 0.0004 -
0.28 10500 0.0004 -
0.2933 11000 0.0004 -
0.3067 11500 0.0004 -
0.32 12000 0.0004 -
0.3333 12500 0.0004 -
0.3467 13000 0.0004 -
0.36 13500 0.0004 -
0.3733 14000 0.0004 -
0.3867 14500 0.0004 -
0.4 15000 0.0004 -
0.4133 15500 0.0004 -
0.4267 16000 0.0004 -
0.44 16500 0.0004 -
0.4533 17000 0.0004 -
0.4667 17500 0.0004 -
0.48 18000 0.0004 -
0.4933 18500 0.0004 -
0.5067 19000 0.0004 -
0.52 19500 0.0004 -
0.5333 20000 0.0004 -
0.5467 20500 0.0004 -
0.56 21000 0.0004 -
0.5733 21500 0.0004 -
0.5867 22000 0.0004 -
0.6 22500 0.0004 -
0.6133 23000 0.0004 -
0.6267 23500 0.0004 -
0.64 24000 0.0004 -
0.6533 24500 0.0004 -
0.6667 25000 0.0004 -
0.68 25500 0.0004 -
0.6933 26000 0.0004 -
0.7067 26500 0.0004 -
0.72 27000 0.0004 -
0.7333 27500 0.0004 -
0.7467 28000 0.0004 -
0.76 28500 0.0004 -
0.7733 29000 0.0004 -
0.7867 29500 0.0004 -
0.8 30000 0.0004 -
0.8133 30500 0.0004 -
0.8267 31000 0.0004 -
0.84 31500 0.0004 -
0.8533 32000 0.0004 -
0.8667 32500 0.0004 -
0.88 33000 0.0004 -
0.8933 33500 0.0004 -
0.9067 34000 0.0004 -
0.92 34500 0.0004 -
0.9333 35000 0.0004 -
0.9467 35500 0.0004 -
0.96 36000 0.0004 -
0.9733 36500 0.0004 -
0.9867 37000 0.0004 -
1.0 37500 0.0004 0.9868

Framework Versions

  • Python: 3.11.3
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.0
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}