metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1200000
- loss:CosineSimilarityLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: Mutton, roasted
sentences:
- Imagine Creamy Butternut Squash Soup
- Perrier Water, bottled
- Crackers, whole-wheat
- source_sentence: Beef Chuck Mock Tender Steak, lean and fat raw
sentences:
- Lamb, Australian leg roasted, bone-in
- Chicken wing, meat and skin, cooked fried flour
- Peaches, canned in heavy syrup
- source_sentence: Squash, zucchini baby raw
sentences:
- Dandelion greens, cooked with salt
- Beets, pickled canned
- Cod, Atlantic canned
- source_sentence: Veggie Meatballs
sentences:
- Salt, iodized
- Sweet and Sour Sauce, ready-to-serve
- Salt pork, raw
- source_sentence: Beef Top Round, lean raw
sentences:
- Ravioli, meat-filled with tomato or meat sauce canned
- Pasta Sauce, spaghetti/marinara ready-to-serve
- Luncheon Slices, meatless
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: validation
type: validation
metrics:
- type: pearson_cosine
value: 0.9913128359649296
name: Pearson Cosine
- type: spearman_cosine
value: 0.9868170667730207
name: Spearman Cosine
SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jonny9f/food_embeddings")
# Run inference
sentences = [
'Beef Top Round, lean raw',
'Luncheon Slices, meatless',
'Pasta Sauce, spaghetti/marinara ready-to-serve',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
validation
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9913 |
spearman_cosine | 0.9868 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,200,000 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 4 tokens
- mean: 10.2 tokens
- max: 28 tokens
- min: 4 tokens
- mean: 9.65 tokens
- max: 23 tokens
- min: 0.0
- mean: 0.26
- max: 0.92
- Samples:
sentence_0 sentence_1 label Beef top round roast, boneless lean select cooked
Blueberries, canned wild in heavy syrup drained
0.21440656185150148
Nance, frozen unsweetened
Soymilk, unsweetened
0.3654276132583618
Drops - Lemonade
Pickle relish, sweet
0.30108280181884767
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | validation_spearman_cosine |
---|---|---|---|
0.0133 | 500 | 0.0031 | - |
0.0267 | 1000 | 0.0028 | - |
0.04 | 1500 | 0.0025 | - |
0.0533 | 2000 | 0.0024 | - |
0.0667 | 2500 | 0.0023 | - |
0.08 | 3000 | 0.0022 | - |
0.0933 | 3500 | 0.0021 | - |
0.1067 | 4000 | 0.002 | - |
0.12 | 4500 | 0.002 | - |
0.1333 | 5000 | 0.0019 | - |
0.1467 | 5500 | 0.0018 | - |
0.16 | 6000 | 0.0018 | - |
0.1733 | 6500 | 0.0017 | - |
0.1867 | 7000 | 0.0017 | - |
0.2 | 7500 | 0.0016 | - |
0.2133 | 8000 | 0.0016 | - |
0.2267 | 8500 | 0.0016 | - |
0.24 | 9000 | 0.0015 | - |
0.2533 | 9500 | 0.0015 | - |
0.2667 | 10000 | 0.0015 | - |
0.28 | 10500 | 0.0015 | - |
0.2933 | 11000 | 0.0015 | - |
0.3067 | 11500 | 0.0014 | - |
0.32 | 12000 | 0.0014 | - |
0.3333 | 12500 | 0.0013 | - |
0.3467 | 13000 | 0.0013 | - |
0.36 | 13500 | 0.0013 | - |
0.3733 | 14000 | 0.0013 | - |
0.3867 | 14500 | 0.0012 | - |
0.4 | 15000 | 0.0012 | - |
0.4133 | 15500 | 0.0012 | - |
0.4267 | 16000 | 0.0012 | - |
0.44 | 16500 | 0.0012 | - |
0.4533 | 17000 | 0.0012 | - |
0.4667 | 17500 | 0.0011 | - |
0.48 | 18000 | 0.0011 | - |
0.4933 | 18500 | 0.0011 | - |
0.5067 | 19000 | 0.0011 | - |
0.52 | 19500 | 0.0011 | - |
0.5333 | 20000 | 0.0011 | - |
0.5467 | 20500 | 0.0011 | - |
0.56 | 21000 | 0.001 | - |
0.5733 | 21500 | 0.001 | - |
0.5867 | 22000 | 0.001 | - |
0.6 | 22500 | 0.001 | - |
0.6133 | 23000 | 0.001 | - |
0.6267 | 23500 | 0.001 | - |
0.64 | 24000 | 0.0009 | - |
0.6533 | 24500 | 0.0009 | - |
0.6667 | 25000 | 0.0009 | - |
0.68 | 25500 | 0.0009 | - |
0.6933 | 26000 | 0.0009 | - |
0.7067 | 26500 | 0.0009 | - |
0.72 | 27000 | 0.0009 | - |
0.7333 | 27500 | 0.0009 | - |
0.7467 | 28000 | 0.0009 | - |
0.76 | 28500 | 0.0008 | - |
0.7733 | 29000 | 0.0008 | - |
0.7867 | 29500 | 0.0008 | - |
0.8 | 30000 | 0.0008 | - |
0.8133 | 30500 | 0.0008 | - |
0.8267 | 31000 | 0.0008 | - |
0.84 | 31500 | 0.0008 | - |
0.8533 | 32000 | 0.0008 | - |
0.8667 | 32500 | 0.0008 | - |
0.88 | 33000 | 0.0007 | - |
0.8933 | 33500 | 0.0007 | - |
0.9067 | 34000 | 0.0008 | - |
0.92 | 34500 | 0.0007 | - |
0.9333 | 35000 | 0.0007 | - |
0.9467 | 35500 | 0.0007 | - |
0.96 | 36000 | 0.0007 | - |
0.9733 | 36500 | 0.0007 | - |
0.9867 | 37000 | 0.0007 | - |
1.0 | 37500 | 0.0007 | 0.9799 |
0.0133 | 500 | 0.0009 | - |
0.0267 | 1000 | 0.0011 | - |
0.04 | 1500 | 0.0011 | - |
0.0533 | 2000 | 0.001 | - |
0.0667 | 2500 | 0.001 | - |
0.08 | 3000 | 0.001 | - |
0.0933 | 3500 | 0.001 | - |
0.1067 | 4000 | 0.001 | - |
0.12 | 4500 | 0.001 | - |
0.1333 | 5000 | 0.001 | - |
0.1467 | 5500 | 0.001 | - |
0.16 | 6000 | 0.0009 | - |
0.1733 | 6500 | 0.0009 | - |
0.1867 | 7000 | 0.0009 | - |
0.2 | 7500 | 0.0009 | - |
0.2133 | 8000 | 0.001 | - |
0.2267 | 8500 | 0.0009 | - |
0.24 | 9000 | 0.0009 | - |
0.2533 | 9500 | 0.0009 | - |
0.2667 | 10000 | 0.0008 | - |
0.28 | 10500 | 0.0009 | - |
0.2933 | 11000 | 0.0008 | - |
0.3067 | 11500 | 0.0008 | - |
0.32 | 12000 | 0.0008 | - |
0.3333 | 12500 | 0.0008 | - |
0.3467 | 13000 | 0.0008 | - |
0.36 | 13500 | 0.0008 | - |
0.3733 | 14000 | 0.0008 | - |
0.3867 | 14500 | 0.0008 | - |
0.4 | 15000 | 0.0008 | - |
0.4133 | 15500 | 0.0007 | - |
0.4267 | 16000 | 0.0007 | - |
0.44 | 16500 | 0.0008 | - |
0.4533 | 17000 | 0.0007 | - |
0.4667 | 17500 | 0.0007 | - |
0.48 | 18000 | 0.0007 | - |
0.4933 | 18500 | 0.0007 | - |
0.5067 | 19000 | 0.0007 | - |
0.52 | 19500 | 0.0007 | - |
0.5333 | 20000 | 0.0007 | - |
0.5467 | 20500 | 0.0007 | - |
0.56 | 21000 | 0.0007 | - |
0.5733 | 21500 | 0.0006 | - |
0.5867 | 22000 | 0.0007 | - |
0.6 | 22500 | 0.0006 | - |
0.6133 | 23000 | 0.0006 | - |
0.6267 | 23500 | 0.0006 | - |
0.64 | 24000 | 0.0006 | - |
0.6533 | 24500 | 0.0006 | - |
0.6667 | 25000 | 0.0006 | - |
0.68 | 25500 | 0.0006 | - |
0.6933 | 26000 | 0.0006 | - |
0.7067 | 26500 | 0.0006 | - |
0.72 | 27000 | 0.0006 | - |
0.7333 | 27500 | 0.0006 | - |
0.7467 | 28000 | 0.0006 | - |
0.76 | 28500 | 0.0005 | - |
0.7733 | 29000 | 0.0005 | - |
0.7867 | 29500 | 0.0006 | - |
0.8 | 30000 | 0.0005 | - |
0.8133 | 30500 | 0.0005 | - |
0.8267 | 31000 | 0.0005 | - |
0.84 | 31500 | 0.0005 | - |
0.8533 | 32000 | 0.0005 | - |
0.8667 | 32500 | 0.0005 | - |
0.88 | 33000 | 0.0005 | - |
0.8933 | 33500 | 0.0005 | - |
0.9067 | 34000 | 0.0005 | - |
0.92 | 34500 | 0.0005 | - |
0.9333 | 35000 | 0.0005 | - |
0.9467 | 35500 | 0.0005 | - |
0.96 | 36000 | 0.0005 | - |
0.9733 | 36500 | 0.0005 | - |
0.9867 | 37000 | 0.0005 | - |
1.0 | 37500 | 0.0005 | 0.9850 |
0.0133 | 500 | 0.0004 | - |
0.0267 | 1000 | 0.0005 | - |
0.04 | 1500 | 0.0005 | - |
0.0533 | 2000 | 0.0005 | - |
0.0667 | 2500 | 0.0005 | - |
0.08 | 3000 | 0.0005 | - |
0.0933 | 3500 | 0.0005 | - |
0.1067 | 4000 | 0.0004 | - |
0.12 | 4500 | 0.0004 | - |
0.1333 | 5000 | 0.0004 | - |
0.1467 | 5500 | 0.0004 | - |
0.16 | 6000 | 0.0004 | - |
0.1733 | 6500 | 0.0004 | - |
0.1867 | 7000 | 0.0004 | - |
0.2 | 7500 | 0.0004 | - |
0.2133 | 8000 | 0.0004 | - |
0.2267 | 8500 | 0.0004 | - |
0.24 | 9000 | 0.0004 | - |
0.2533 | 9500 | 0.0004 | - |
0.2667 | 10000 | 0.0004 | - |
0.28 | 10500 | 0.0004 | - |
0.2933 | 11000 | 0.0004 | - |
0.3067 | 11500 | 0.0004 | - |
0.32 | 12000 | 0.0004 | - |
0.3333 | 12500 | 0.0004 | - |
0.3467 | 13000 | 0.0004 | - |
0.36 | 13500 | 0.0004 | - |
0.3733 | 14000 | 0.0004 | - |
0.3867 | 14500 | 0.0004 | - |
0.4 | 15000 | 0.0004 | - |
0.4133 | 15500 | 0.0004 | - |
0.4267 | 16000 | 0.0004 | - |
0.44 | 16500 | 0.0004 | - |
0.4533 | 17000 | 0.0004 | - |
0.4667 | 17500 | 0.0004 | - |
0.48 | 18000 | 0.0004 | - |
0.4933 | 18500 | 0.0004 | - |
0.5067 | 19000 | 0.0004 | - |
0.52 | 19500 | 0.0004 | - |
0.5333 | 20000 | 0.0004 | - |
0.5467 | 20500 | 0.0004 | - |
0.56 | 21000 | 0.0004 | - |
0.5733 | 21500 | 0.0004 | - |
0.5867 | 22000 | 0.0004 | - |
0.6 | 22500 | 0.0004 | - |
0.6133 | 23000 | 0.0004 | - |
0.6267 | 23500 | 0.0004 | - |
0.64 | 24000 | 0.0004 | - |
0.6533 | 24500 | 0.0004 | - |
0.6667 | 25000 | 0.0004 | - |
0.68 | 25500 | 0.0004 | - |
0.6933 | 26000 | 0.0004 | - |
0.7067 | 26500 | 0.0004 | - |
0.72 | 27000 | 0.0004 | - |
0.7333 | 27500 | 0.0004 | - |
0.7467 | 28000 | 0.0004 | - |
0.76 | 28500 | 0.0004 | - |
0.7733 | 29000 | 0.0004 | - |
0.7867 | 29500 | 0.0004 | - |
0.8 | 30000 | 0.0004 | - |
0.8133 | 30500 | 0.0004 | - |
0.8267 | 31000 | 0.0004 | - |
0.84 | 31500 | 0.0004 | - |
0.8533 | 32000 | 0.0004 | - |
0.8667 | 32500 | 0.0004 | - |
0.88 | 33000 | 0.0004 | - |
0.8933 | 33500 | 0.0004 | - |
0.9067 | 34000 | 0.0004 | - |
0.92 | 34500 | 0.0004 | - |
0.9333 | 35000 | 0.0004 | - |
0.9467 | 35500 | 0.0004 | - |
0.96 | 36000 | 0.0004 | - |
0.9733 | 36500 | 0.0004 | - |
0.9867 | 37000 | 0.0004 | - |
1.0 | 37500 | 0.0004 | 0.9868 |
Framework Versions
- Python: 3.11.3
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}