|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:1200000 |
|
- loss:CosineSimilarityLoss |
|
base_model: sentence-transformers/all-mpnet-base-v2 |
|
widget: |
|
- source_sentence: Mutton, roasted |
|
sentences: |
|
- Imagine Creamy Butternut Squash Soup |
|
- Perrier Water, bottled |
|
- Crackers, whole-wheat |
|
- source_sentence: Beef Chuck Mock Tender Steak, lean and fat raw |
|
sentences: |
|
- Lamb, Australian leg roasted, bone-in |
|
- Chicken wing, meat and skin, cooked fried flour |
|
- Peaches, canned in heavy syrup |
|
- source_sentence: Squash, zucchini baby raw |
|
sentences: |
|
- Dandelion greens, cooked with salt |
|
- Beets, pickled canned |
|
- Cod, Atlantic canned |
|
- source_sentence: Veggie Meatballs |
|
sentences: |
|
- Salt, iodized |
|
- Sweet and Sour Sauce, ready-to-serve |
|
- Salt pork, raw |
|
- source_sentence: Beef Top Round, lean raw |
|
sentences: |
|
- Ravioli, meat-filled with tomato or meat sauce canned |
|
- Pasta Sauce, spaghetti/marinara ready-to-serve |
|
- Luncheon Slices, meatless |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: validation |
|
type: validation |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9913128359649296 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.9868170667730207 |
|
name: Spearman Cosine |
|
new_version: jonny9f/food_embeddings2 |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 --> |
|
- **Maximum Sequence Length:** 384 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("jonny9f/food_embeddings") |
|
# Run inference |
|
sentences = [ |
|
'Beef Top Round, lean raw', |
|
'Luncheon Slices, meatless', |
|
'Pasta Sauce, spaghetti/marinara ready-to-serve', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Dataset: `validation` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.9913 | |
|
| **spearman_cosine** | **0.9868** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 1,200,000 training samples |
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | label | |
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 10.2 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.65 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.26</li><li>max: 0.92</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | label | |
|
|:---------------------------------------------------------------|:-------------------------------------------------------------|:---------------------------------| |
|
| <code>Beef top round roast, boneless lean select cooked</code> | <code>Blueberries, canned wild in heavy syrup drained</code> | <code>0.21440656185150148</code> | |
|
| <code>Nance, frozen unsweetened</code> | <code>Soymilk, unsweetened</code> | <code>0.3654276132583618</code> | |
|
| <code>Drops - Lemonade</code> | <code>Pickle relish, sweet</code> | <code>0.30108280181884767</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `num_train_epochs`: 1 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | validation_spearman_cosine | |
|
|:------:|:-----:|:-------------:|:--------------------------:| |
|
| 0.0133 | 500 | 0.0031 | - | |
|
| 0.0267 | 1000 | 0.0028 | - | |
|
| 0.04 | 1500 | 0.0025 | - | |
|
| 0.0533 | 2000 | 0.0024 | - | |
|
| 0.0667 | 2500 | 0.0023 | - | |
|
| 0.08 | 3000 | 0.0022 | - | |
|
| 0.0933 | 3500 | 0.0021 | - | |
|
| 0.1067 | 4000 | 0.002 | - | |
|
| 0.12 | 4500 | 0.002 | - | |
|
| 0.1333 | 5000 | 0.0019 | - | |
|
| 0.1467 | 5500 | 0.0018 | - | |
|
| 0.16 | 6000 | 0.0018 | - | |
|
| 0.1733 | 6500 | 0.0017 | - | |
|
| 0.1867 | 7000 | 0.0017 | - | |
|
| 0.2 | 7500 | 0.0016 | - | |
|
| 0.2133 | 8000 | 0.0016 | - | |
|
| 0.2267 | 8500 | 0.0016 | - | |
|
| 0.24 | 9000 | 0.0015 | - | |
|
| 0.2533 | 9500 | 0.0015 | - | |
|
| 0.2667 | 10000 | 0.0015 | - | |
|
| 0.28 | 10500 | 0.0015 | - | |
|
| 0.2933 | 11000 | 0.0015 | - | |
|
| 0.3067 | 11500 | 0.0014 | - | |
|
| 0.32 | 12000 | 0.0014 | - | |
|
| 0.3333 | 12500 | 0.0013 | - | |
|
| 0.3467 | 13000 | 0.0013 | - | |
|
| 0.36 | 13500 | 0.0013 | - | |
|
| 0.3733 | 14000 | 0.0013 | - | |
|
| 0.3867 | 14500 | 0.0012 | - | |
|
| 0.4 | 15000 | 0.0012 | - | |
|
| 0.4133 | 15500 | 0.0012 | - | |
|
| 0.4267 | 16000 | 0.0012 | - | |
|
| 0.44 | 16500 | 0.0012 | - | |
|
| 0.4533 | 17000 | 0.0012 | - | |
|
| 0.4667 | 17500 | 0.0011 | - | |
|
| 0.48 | 18000 | 0.0011 | - | |
|
| 0.4933 | 18500 | 0.0011 | - | |
|
| 0.5067 | 19000 | 0.0011 | - | |
|
| 0.52 | 19500 | 0.0011 | - | |
|
| 0.5333 | 20000 | 0.0011 | - | |
|
| 0.5467 | 20500 | 0.0011 | - | |
|
| 0.56 | 21000 | 0.001 | - | |
|
| 0.5733 | 21500 | 0.001 | - | |
|
| 0.5867 | 22000 | 0.001 | - | |
|
| 0.6 | 22500 | 0.001 | - | |
|
| 0.6133 | 23000 | 0.001 | - | |
|
| 0.6267 | 23500 | 0.001 | - | |
|
| 0.64 | 24000 | 0.0009 | - | |
|
| 0.6533 | 24500 | 0.0009 | - | |
|
| 0.6667 | 25000 | 0.0009 | - | |
|
| 0.68 | 25500 | 0.0009 | - | |
|
| 0.6933 | 26000 | 0.0009 | - | |
|
| 0.7067 | 26500 | 0.0009 | - | |
|
| 0.72 | 27000 | 0.0009 | - | |
|
| 0.7333 | 27500 | 0.0009 | - | |
|
| 0.7467 | 28000 | 0.0009 | - | |
|
| 0.76 | 28500 | 0.0008 | - | |
|
| 0.7733 | 29000 | 0.0008 | - | |
|
| 0.7867 | 29500 | 0.0008 | - | |
|
| 0.8 | 30000 | 0.0008 | - | |
|
| 0.8133 | 30500 | 0.0008 | - | |
|
| 0.8267 | 31000 | 0.0008 | - | |
|
| 0.84 | 31500 | 0.0008 | - | |
|
| 0.8533 | 32000 | 0.0008 | - | |
|
| 0.8667 | 32500 | 0.0008 | - | |
|
| 0.88 | 33000 | 0.0007 | - | |
|
| 0.8933 | 33500 | 0.0007 | - | |
|
| 0.9067 | 34000 | 0.0008 | - | |
|
| 0.92 | 34500 | 0.0007 | - | |
|
| 0.9333 | 35000 | 0.0007 | - | |
|
| 0.9467 | 35500 | 0.0007 | - | |
|
| 0.96 | 36000 | 0.0007 | - | |
|
| 0.9733 | 36500 | 0.0007 | - | |
|
| 0.9867 | 37000 | 0.0007 | - | |
|
| 1.0 | 37500 | 0.0007 | 0.9799 | |
|
| 0.0133 | 500 | 0.0009 | - | |
|
| 0.0267 | 1000 | 0.0011 | - | |
|
| 0.04 | 1500 | 0.0011 | - | |
|
| 0.0533 | 2000 | 0.001 | - | |
|
| 0.0667 | 2500 | 0.001 | - | |
|
| 0.08 | 3000 | 0.001 | - | |
|
| 0.0933 | 3500 | 0.001 | - | |
|
| 0.1067 | 4000 | 0.001 | - | |
|
| 0.12 | 4500 | 0.001 | - | |
|
| 0.1333 | 5000 | 0.001 | - | |
|
| 0.1467 | 5500 | 0.001 | - | |
|
| 0.16 | 6000 | 0.0009 | - | |
|
| 0.1733 | 6500 | 0.0009 | - | |
|
| 0.1867 | 7000 | 0.0009 | - | |
|
| 0.2 | 7500 | 0.0009 | - | |
|
| 0.2133 | 8000 | 0.001 | - | |
|
| 0.2267 | 8500 | 0.0009 | - | |
|
| 0.24 | 9000 | 0.0009 | - | |
|
| 0.2533 | 9500 | 0.0009 | - | |
|
| 0.2667 | 10000 | 0.0008 | - | |
|
| 0.28 | 10500 | 0.0009 | - | |
|
| 0.2933 | 11000 | 0.0008 | - | |
|
| 0.3067 | 11500 | 0.0008 | - | |
|
| 0.32 | 12000 | 0.0008 | - | |
|
| 0.3333 | 12500 | 0.0008 | - | |
|
| 0.3467 | 13000 | 0.0008 | - | |
|
| 0.36 | 13500 | 0.0008 | - | |
|
| 0.3733 | 14000 | 0.0008 | - | |
|
| 0.3867 | 14500 | 0.0008 | - | |
|
| 0.4 | 15000 | 0.0008 | - | |
|
| 0.4133 | 15500 | 0.0007 | - | |
|
| 0.4267 | 16000 | 0.0007 | - | |
|
| 0.44 | 16500 | 0.0008 | - | |
|
| 0.4533 | 17000 | 0.0007 | - | |
|
| 0.4667 | 17500 | 0.0007 | - | |
|
| 0.48 | 18000 | 0.0007 | - | |
|
| 0.4933 | 18500 | 0.0007 | - | |
|
| 0.5067 | 19000 | 0.0007 | - | |
|
| 0.52 | 19500 | 0.0007 | - | |
|
| 0.5333 | 20000 | 0.0007 | - | |
|
| 0.5467 | 20500 | 0.0007 | - | |
|
| 0.56 | 21000 | 0.0007 | - | |
|
| 0.5733 | 21500 | 0.0006 | - | |
|
| 0.5867 | 22000 | 0.0007 | - | |
|
| 0.6 | 22500 | 0.0006 | - | |
|
| 0.6133 | 23000 | 0.0006 | - | |
|
| 0.6267 | 23500 | 0.0006 | - | |
|
| 0.64 | 24000 | 0.0006 | - | |
|
| 0.6533 | 24500 | 0.0006 | - | |
|
| 0.6667 | 25000 | 0.0006 | - | |
|
| 0.68 | 25500 | 0.0006 | - | |
|
| 0.6933 | 26000 | 0.0006 | - | |
|
| 0.7067 | 26500 | 0.0006 | - | |
|
| 0.72 | 27000 | 0.0006 | - | |
|
| 0.7333 | 27500 | 0.0006 | - | |
|
| 0.7467 | 28000 | 0.0006 | - | |
|
| 0.76 | 28500 | 0.0005 | - | |
|
| 0.7733 | 29000 | 0.0005 | - | |
|
| 0.7867 | 29500 | 0.0006 | - | |
|
| 0.8 | 30000 | 0.0005 | - | |
|
| 0.8133 | 30500 | 0.0005 | - | |
|
| 0.8267 | 31000 | 0.0005 | - | |
|
| 0.84 | 31500 | 0.0005 | - | |
|
| 0.8533 | 32000 | 0.0005 | - | |
|
| 0.8667 | 32500 | 0.0005 | - | |
|
| 0.88 | 33000 | 0.0005 | - | |
|
| 0.8933 | 33500 | 0.0005 | - | |
|
| 0.9067 | 34000 | 0.0005 | - | |
|
| 0.92 | 34500 | 0.0005 | - | |
|
| 0.9333 | 35000 | 0.0005 | - | |
|
| 0.9467 | 35500 | 0.0005 | - | |
|
| 0.96 | 36000 | 0.0005 | - | |
|
| 0.9733 | 36500 | 0.0005 | - | |
|
| 0.9867 | 37000 | 0.0005 | - | |
|
| 1.0 | 37500 | 0.0005 | 0.9850 | |
|
| 0.0133 | 500 | 0.0004 | - | |
|
| 0.0267 | 1000 | 0.0005 | - | |
|
| 0.04 | 1500 | 0.0005 | - | |
|
| 0.0533 | 2000 | 0.0005 | - | |
|
| 0.0667 | 2500 | 0.0005 | - | |
|
| 0.08 | 3000 | 0.0005 | - | |
|
| 0.0933 | 3500 | 0.0005 | - | |
|
| 0.1067 | 4000 | 0.0004 | - | |
|
| 0.12 | 4500 | 0.0004 | - | |
|
| 0.1333 | 5000 | 0.0004 | - | |
|
| 0.1467 | 5500 | 0.0004 | - | |
|
| 0.16 | 6000 | 0.0004 | - | |
|
| 0.1733 | 6500 | 0.0004 | - | |
|
| 0.1867 | 7000 | 0.0004 | - | |
|
| 0.2 | 7500 | 0.0004 | - | |
|
| 0.2133 | 8000 | 0.0004 | - | |
|
| 0.2267 | 8500 | 0.0004 | - | |
|
| 0.24 | 9000 | 0.0004 | - | |
|
| 0.2533 | 9500 | 0.0004 | - | |
|
| 0.2667 | 10000 | 0.0004 | - | |
|
| 0.28 | 10500 | 0.0004 | - | |
|
| 0.2933 | 11000 | 0.0004 | - | |
|
| 0.3067 | 11500 | 0.0004 | - | |
|
| 0.32 | 12000 | 0.0004 | - | |
|
| 0.3333 | 12500 | 0.0004 | - | |
|
| 0.3467 | 13000 | 0.0004 | - | |
|
| 0.36 | 13500 | 0.0004 | - | |
|
| 0.3733 | 14000 | 0.0004 | - | |
|
| 0.3867 | 14500 | 0.0004 | - | |
|
| 0.4 | 15000 | 0.0004 | - | |
|
| 0.4133 | 15500 | 0.0004 | - | |
|
| 0.4267 | 16000 | 0.0004 | - | |
|
| 0.44 | 16500 | 0.0004 | - | |
|
| 0.4533 | 17000 | 0.0004 | - | |
|
| 0.4667 | 17500 | 0.0004 | - | |
|
| 0.48 | 18000 | 0.0004 | - | |
|
| 0.4933 | 18500 | 0.0004 | - | |
|
| 0.5067 | 19000 | 0.0004 | - | |
|
| 0.52 | 19500 | 0.0004 | - | |
|
| 0.5333 | 20000 | 0.0004 | - | |
|
| 0.5467 | 20500 | 0.0004 | - | |
|
| 0.56 | 21000 | 0.0004 | - | |
|
| 0.5733 | 21500 | 0.0004 | - | |
|
| 0.5867 | 22000 | 0.0004 | - | |
|
| 0.6 | 22500 | 0.0004 | - | |
|
| 0.6133 | 23000 | 0.0004 | - | |
|
| 0.6267 | 23500 | 0.0004 | - | |
|
| 0.64 | 24000 | 0.0004 | - | |
|
| 0.6533 | 24500 | 0.0004 | - | |
|
| 0.6667 | 25000 | 0.0004 | - | |
|
| 0.68 | 25500 | 0.0004 | - | |
|
| 0.6933 | 26000 | 0.0004 | - | |
|
| 0.7067 | 26500 | 0.0004 | - | |
|
| 0.72 | 27000 | 0.0004 | - | |
|
| 0.7333 | 27500 | 0.0004 | - | |
|
| 0.7467 | 28000 | 0.0004 | - | |
|
| 0.76 | 28500 | 0.0004 | - | |
|
| 0.7733 | 29000 | 0.0004 | - | |
|
| 0.7867 | 29500 | 0.0004 | - | |
|
| 0.8 | 30000 | 0.0004 | - | |
|
| 0.8133 | 30500 | 0.0004 | - | |
|
| 0.8267 | 31000 | 0.0004 | - | |
|
| 0.84 | 31500 | 0.0004 | - | |
|
| 0.8533 | 32000 | 0.0004 | - | |
|
| 0.8667 | 32500 | 0.0004 | - | |
|
| 0.88 | 33000 | 0.0004 | - | |
|
| 0.8933 | 33500 | 0.0004 | - | |
|
| 0.9067 | 34000 | 0.0004 | - | |
|
| 0.92 | 34500 | 0.0004 | - | |
|
| 0.9333 | 35000 | 0.0004 | - | |
|
| 0.9467 | 35500 | 0.0004 | - | |
|
| 0.96 | 36000 | 0.0004 | - | |
|
| 0.9733 | 36500 | 0.0004 | - | |
|
| 0.9867 | 37000 | 0.0004 | - | |
|
| 1.0 | 37500 | 0.0004 | 0.9868 | |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.11.3 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.48.0 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.2.1 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |