|
--- |
|
license: mit |
|
base_model: openmmlab/upernet-swin-small |
|
tags: |
|
- image-segmentation |
|
- vision |
|
- generated_from_trainer |
|
model-index: |
|
- name: upernet-swin-small-finetuned |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# upernet-swin-small-finetuned |
|
|
|
This model is a fine-tuned version of [openmmlab/upernet-swin-small](https://huggingface.co/openmmlab/upernet-swin-small) on the jpodivin/plantorgans dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2914 |
|
- Mean Iou: 0.4182 |
|
- Mean Accuracy: 0.5282 |
|
- Overall Accuracy: 0.7341 |
|
- Accuracy Void: nan |
|
- Accuracy Fruit: 0.8590 |
|
- Accuracy Leaf: 0.7032 |
|
- Accuracy Flower: 0.0 |
|
- Accuracy Stem: 0.5505 |
|
- Iou Void: 0.0 |
|
- Iou Fruit: 0.8554 |
|
- Iou Leaf: 0.6976 |
|
- Iou Flower: 0.0 |
|
- Iou Stem: 0.5381 |
|
- Median Iou: 0.5381 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0006 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 10 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Void | Accuracy Fruit | Accuracy Leaf | Accuracy Flower | Accuracy Stem | Iou Void | Iou Fruit | Iou Leaf | Iou Flower | Iou Stem | Median Iou | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------:|:--------------:|:-------------:|:---------------:|:-------------:|:--------:|:---------:|:--------:|:----------:|:--------:|:----------:| |
|
| 0.8566 | 1.0 | 575 | 0.3365 | 0.3723 | 0.4705 | 0.6560 | nan | 0.8000 | 0.6122 | 0.0 | 0.4699 | 0.0 | 0.7976 | 0.6041 | 0.0 | 0.4598 | 0.4598 | |
|
| 0.3338 | 2.0 | 1150 | 0.3030 | 0.3922 | 0.4937 | 0.7155 | nan | 0.8558 | 0.7024 | 0.0 | 0.4166 | 0.0 | 0.8517 | 0.6972 | 0.0 | 0.4119 | 0.4119 | |
|
| 0.3477 | 3.0 | 1725 | 0.2914 | 0.4182 | 0.5282 | 0.7341 | nan | 0.8590 | 0.7032 | 0.0 | 0.5505 | 0.0 | 0.8554 | 0.6976 | 0.0 | 0.5381 | 0.5381 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.0.dev0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|