layoutlm-funsd1 / README.md
jwpark84's picture
End of training
743feee verified
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd1
    results: []

layoutlm-funsd1

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6653
  • Answer: {'precision': 0.6705756929637526, 'recall': 0.7775030902348579, 'f1': 0.7200915855752718, 'number': 809}
  • Header: {'precision': 0.30275229357798167, 'recall': 0.2773109243697479, 'f1': 0.28947368421052627, 'number': 119}
  • Question: {'precision': 0.7173732335827099, 'recall': 0.8103286384976526, 'f1': 0.7610229276895942, 'number': 1065}
  • Overall Precision: 0.6778
  • Overall Recall: 0.7652
  • Overall F1: 0.7188
  • Overall Accuracy: 0.7992

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8388 1.0 10 1.6345 {'precision': 0.010158013544018058, 'recall': 0.011124845488257108, 'f1': 0.010619469026548672, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.12983770287141075, 'recall': 0.09765258215962441, 'f1': 0.11146838156484459, 'number': 1065} 0.0670 0.0567 0.0614 0.3424
1.5101 2.0 20 1.3279 {'precision': 0.10227272727272728, 'recall': 0.08899876390605686, 'f1': 0.09517514871116987, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.3082191780821918, 'recall': 0.4225352112676056, 'f1': 0.3564356435643564, 'number': 1065} 0.2412 0.2619 0.2511 0.5546
1.196 3.0 30 1.0812 {'precision': 0.33375, 'recall': 0.3300370828182942, 'f1': 0.3318831572405221, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4708233413269384, 'recall': 0.5530516431924882, 'f1': 0.5086355785837651, 'number': 1065} 0.4153 0.4295 0.4223 0.6283
0.957 4.0 40 0.8960 {'precision': 0.5760082730093071, 'recall': 0.688504326328801, 'f1': 0.6272522522522522, 'number': 809} {'precision': 0.027777777777777776, 'recall': 0.008403361344537815, 'f1': 0.012903225806451613, 'number': 119} {'precision': 0.6268939393939394, 'recall': 0.6215962441314554, 'f1': 0.6242338519566243, 'number': 1065} 0.5925 0.6121 0.6022 0.7315
0.7609 5.0 50 0.7756 {'precision': 0.608955223880597, 'recall': 0.7564894932014833, 'f1': 0.6747519294377067, 'number': 809} {'precision': 0.11428571428571428, 'recall': 0.06722689075630252, 'f1': 0.08465608465608465, 'number': 119} {'precision': 0.6362098138747885, 'recall': 0.7061032863849765, 'f1': 0.669336893635959, 'number': 1065} 0.6079 0.6884 0.6456 0.7649
0.634 6.0 60 0.7261 {'precision': 0.6207951070336392, 'recall': 0.7527812113720643, 'f1': 0.6804469273743018, 'number': 809} {'precision': 0.24, 'recall': 0.15126050420168066, 'f1': 0.18556701030927833, 'number': 119} {'precision': 0.6666666666666666, 'recall': 0.7380281690140845, 'f1': 0.7005347593582888, 'number': 1065} 0.6322 0.7090 0.6684 0.7783
0.5815 7.0 70 0.6992 {'precision': 0.6612377850162866, 'recall': 0.7527812113720643, 'f1': 0.7040462427745664, 'number': 809} {'precision': 0.27586206896551724, 'recall': 0.20168067226890757, 'f1': 0.23300970873786409, 'number': 119} {'precision': 0.6899841017488076, 'recall': 0.8150234741784037, 'f1': 0.7473095135600517, 'number': 1065} 0.6624 0.7531 0.7049 0.7906
0.5279 8.0 80 0.6827 {'precision': 0.6687631027253669, 'recall': 0.788627935723115, 'f1': 0.7237663074305162, 'number': 809} {'precision': 0.3010752688172043, 'recall': 0.23529411764705882, 'f1': 0.2641509433962264, 'number': 119} {'precision': 0.7285464098073555, 'recall': 0.7812206572769953, 'f1': 0.7539646579066607, 'number': 1065} 0.6843 0.7516 0.7164 0.7973
0.4907 9.0 90 0.6732 {'precision': 0.6609442060085837, 'recall': 0.761433868974042, 'f1': 0.707639287765652, 'number': 809} {'precision': 0.3148148148148148, 'recall': 0.2857142857142857, 'f1': 0.29955947136563876, 'number': 119} {'precision': 0.7145214521452146, 'recall': 0.8131455399061033, 'f1': 0.7606499780412823, 'number': 1065} 0.6732 0.7607 0.7143 0.7971
0.4734 10.0 100 0.6653 {'precision': 0.6705756929637526, 'recall': 0.7775030902348579, 'f1': 0.7200915855752718, 'number': 809} {'precision': 0.30275229357798167, 'recall': 0.2773109243697479, 'f1': 0.28947368421052627, 'number': 119} {'precision': 0.7173732335827099, 'recall': 0.8103286384976526, 'f1': 0.7610229276895942, 'number': 1065} 0.6778 0.7652 0.7188 0.7992

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1