karsar's picture
Update README.md
898e1f0 verified
metadata
model-index:
  - name: karsar/paraphrase-multilingual-MiniLM-L12-hu_v1
    results:
      - dataset:
          config: hun_Latn-hun_Latn
          name: MTEB BelebeleRetrieval (hun_Latn-hun_Latn)
          revision: 75b399394a9803252cfec289d103de462763db7c
          split: test
          type: facebook/belebele
        metrics:
          - type: main_score
            value: 77.865
          - type: map_at_1
            value: 67.333
          - type: map_at_10
            value: 74.404
          - type: map_at_100
            value: 74.802
          - type: map_at_1000
            value: 74.809
          - type: map_at_20
            value: 74.63
          - type: map_at_3
            value: 72.796
          - type: map_at_5
            value: 73.67399999999999
          - type: mrr_at_1
            value: 67.33333333333333
          - type: mrr_at_10
            value: 74.40396825396829
          - type: mrr_at_100
            value: 74.80177264047548
          - type: mrr_at_1000
            value: 74.80937346439818
          - type: mrr_at_20
            value: 74.62979204843244
          - type: mrr_at_3
            value: 72.7962962962963
          - type: mrr_at_5
            value: 73.6740740740741
          - type: nauc_map_at_1000_diff1
            value: 76.08133094195743
          - type: nauc_map_at_1000_max
            value: 61.727834175182736
          - type: nauc_map_at_1000_std
            value: -2.3231732437794568
          - type: nauc_map_at_100_diff1
            value: 76.07916259051902
          - type: nauc_map_at_100_max
            value: 61.72703450852774
          - type: nauc_map_at_100_std
            value: -2.3175338063349575
          - type: nauc_map_at_10_diff1
            value: 75.97996147738112
          - type: nauc_map_at_10_max
            value: 61.860784493617224
          - type: nauc_map_at_10_std
            value: -2.4887315051072356
          - type: nauc_map_at_1_diff1
            value: 78.13561632940586
          - type: nauc_map_at_1_max
            value: 59.243520843511746
          - type: nauc_map_at_1_std
            value: -2.6689239089679515
          - type: nauc_map_at_20_diff1
            value: 76.06883452011327
          - type: nauc_map_at_20_max
            value: 61.775589074510826
          - type: nauc_map_at_20_std
            value: -2.3905575770447585
          - type: nauc_map_at_3_diff1
            value: 75.85937006372846
          - type: nauc_map_at_3_max
            value: 61.819093557650895
          - type: nauc_map_at_3_std
            value: -2.5207238945764647
          - type: nauc_map_at_5_diff1
            value: 76.06929563357589
          - type: nauc_map_at_5_max
            value: 61.93563829360039
          - type: nauc_map_at_5_std
            value: -1.9424637593671918
          - type: nauc_mrr_at_1000_diff1
            value: 76.08133094195743
          - type: nauc_mrr_at_1000_max
            value: 61.727834175182736
          - type: nauc_mrr_at_1000_std
            value: -2.3231732437794568
          - type: nauc_mrr_at_100_diff1
            value: 76.07916259051902
          - type: nauc_mrr_at_100_max
            value: 61.72703450852774
          - type: nauc_mrr_at_100_std
            value: -2.3175338063349575
          - type: nauc_mrr_at_10_diff1
            value: 75.97996147738112
          - type: nauc_mrr_at_10_max
            value: 61.860784493617224
          - type: nauc_mrr_at_10_std
            value: -2.4887315051072356
          - type: nauc_mrr_at_1_diff1
            value: 78.13561632940586
          - type: nauc_mrr_at_1_max
            value: 59.243520843511746
          - type: nauc_mrr_at_1_std
            value: -2.6689239089679515
          - type: nauc_mrr_at_20_diff1
            value: 76.06883452011327
          - type: nauc_mrr_at_20_max
            value: 61.775589074510826
          - type: nauc_mrr_at_20_std
            value: -2.3905575770447585
          - type: nauc_mrr_at_3_diff1
            value: 75.85937006372846
          - type: nauc_mrr_at_3_max
            value: 61.819093557650895
          - type: nauc_mrr_at_3_std
            value: -2.5207238945764647
          - type: nauc_mrr_at_5_diff1
            value: 76.06929563357589
          - type: nauc_mrr_at_5_max
            value: 61.93563829360039
          - type: nauc_mrr_at_5_std
            value: -1.9424637593671918
          - type: nauc_ndcg_at_1000_diff1
            value: 75.7057240434196
          - type: nauc_ndcg_at_1000_max
            value: 62.021717989510385
          - type: nauc_ndcg_at_1000_std
            value: -2.2522490330905103
          - type: nauc_ndcg_at_100_diff1
            value: 75.62156032414751
          - type: nauc_ndcg_at_100_max
            value: 61.97932968109654
          - type: nauc_ndcg_at_100_std
            value: -2.0118635701265375
          - type: nauc_ndcg_at_10_diff1
            value: 75.09836101324169
          - type: nauc_ndcg_at_10_max
            value: 62.703427209156736
          - type: nauc_ndcg_at_10_std
            value: -2.9287738405282395
          - type: nauc_ndcg_at_1_diff1
            value: 78.13561632940586
          - type: nauc_ndcg_at_1_max
            value: 59.243520843511746
          - type: nauc_ndcg_at_1_std
            value: -2.6689239089679515
          - type: nauc_ndcg_at_20_diff1
            value: 75.46348763248093
          - type: nauc_ndcg_at_20_max
            value: 62.35498579351012
          - type: nauc_ndcg_at_20_std
            value: -2.577338920595739
          - type: nauc_ndcg_at_3_diff1
            value: 74.92773626606146
          - type: nauc_ndcg_at_3_max
            value: 62.55812080913172
          - type: nauc_ndcg_at_3_std
            value: -2.5630879822636476
          - type: nauc_ndcg_at_5_diff1
            value: 75.3100398038724
          - type: nauc_ndcg_at_5_max
            value: 62.81733471459409
          - type: nauc_ndcg_at_5_std
            value: -1.501748019065971
          - type: nauc_precision_at_1000_diff1
            value: .nan
          - type: nauc_precision_at_1000_max
            value: .nan
          - type: nauc_precision_at_1000_std
            value: .nan
          - type: nauc_precision_at_100_diff1
            value: 66.63165266106552
          - type: nauc_precision_at_100_max
            value: 57.60582010582053
          - type: nauc_precision_at_100_std
            value: 23.844537815126937
          - type: nauc_precision_at_10_diff1
            value: 70.08984254109942
          - type: nauc_precision_at_10_max
            value: 67.45880653843606
          - type: nauc_precision_at_10_std
            value: -6.3555626412584
          - type: nauc_precision_at_1_diff1
            value: 78.13561632940586
          - type: nauc_precision_at_1_max
            value: 59.243520843511746
          - type: nauc_precision_at_1_std
            value: -2.6689239089679515
          - type: nauc_precision_at_20_diff1
            value: 71.63306637208878
          - type: nauc_precision_at_20_max
            value: 65.99137307505141
          - type: nauc_precision_at_20_std
            value: -4.675767020423249
          - type: nauc_precision_at_3_diff1
            value: 71.57608769475272
          - type: nauc_precision_at_3_max
            value: 65.10683383365713
          - type: nauc_precision_at_3_std
            value: -2.7514636167292985
          - type: nauc_precision_at_5_diff1
            value: 72.21412151067312
          - type: nauc_precision_at_5_max
            value: 66.43448275862069
          - type: nauc_precision_at_5_std
            value: 0.4555008210180189
          - type: nauc_recall_at_1000_diff1
            value: .nan
          - type: nauc_recall_at_1000_max
            value: .nan
          - type: nauc_recall_at_1000_std
            value: .nan
          - type: nauc_recall_at_100_diff1
            value: 66.63165266106327
          - type: nauc_recall_at_100_max
            value: 57.60582010581922
          - type: nauc_recall_at_100_std
            value: 23.844537815125907
          - type: nauc_recall_at_10_diff1
            value: 70.08984254109967
          - type: nauc_recall_at_10_max
            value: 67.45880653843632
          - type: nauc_recall_at_10_std
            value: -6.355562641258283
          - type: nauc_recall_at_1_diff1
            value: 78.13561632940586
          - type: nauc_recall_at_1_max
            value: 59.243520843511746
          - type: nauc_recall_at_1_std
            value: -2.6689239089679515
          - type: nauc_recall_at_20_diff1
            value: 71.6330663720887
          - type: nauc_recall_at_20_max
            value: 65.9913730750516
          - type: nauc_recall_at_20_std
            value: -4.675767020422999
          - type: nauc_recall_at_3_diff1
            value: 71.57608769475274
          - type: nauc_recall_at_3_max
            value: 65.106833833657
          - type: nauc_recall_at_3_std
            value: -2.7514636167294
          - type: nauc_recall_at_5_diff1
            value: 72.21412151067315
          - type: nauc_recall_at_5_max
            value: 66.43448275862077
          - type: nauc_recall_at_5_std
            value: 0.4555008210180812
          - type: ndcg_at_1
            value: 67.333
          - type: ndcg_at_10
            value: 77.865
          - type: ndcg_at_100
            value: 79.927
          - type: ndcg_at_1000
            value: 80.104
          - type: ndcg_at_20
            value: 78.701
          - type: ndcg_at_3
            value: 74.509
          - type: ndcg_at_5
            value: 76.101
          - type: precision_at_1
            value: 67.333
          - type: precision_at_10
            value: 8.878
          - type: precision_at_100
            value: 0.987
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_20
            value: 4.606
          - type: precision_at_3
            value: 26.480999999999998
          - type: precision_at_5
            value: 16.667
          - type: recall_at_1
            value: 67.333
          - type: recall_at_10
            value: 88.778
          - type: recall_at_100
            value: 98.667
          - type: recall_at_1000
            value: 100
          - type: recall_at_20
            value: 92.111
          - type: recall_at_3
            value: 79.444
          - type: recall_at_5
            value: 83.333
        task:
          type: Retrieval
      - dataset:
          config: hun_Latn-eng_Latn
          name: MTEB BelebeleRetrieval (hun_Latn-eng_Latn)
          revision: 75b399394a9803252cfec289d103de462763db7c
          split: test
          type: facebook/belebele
        metrics:
          - type: main_score
            value: 71.307
          - type: map_at_1
            value: 57.778
          - type: map_at_10
            value: 66.843
          - type: map_at_100
            value: 67.368
          - type: map_at_1000
            value: 67.38300000000001
          - type: map_at_20
            value: 67.162
          - type: map_at_3
            value: 64.704
          - type: map_at_5
            value: 65.97
          - type: mrr_at_1
            value: 57.77777777777777
          - type: mrr_at_10
            value: 66.8428130511464
          - type: mrr_at_100
            value: 67.36803803097415
          - type: mrr_at_1000
            value: 67.38317813286176
          - type: mrr_at_20
            value: 67.16164827986293
          - type: mrr_at_3
            value: 64.7037037037037
          - type: mrr_at_5
            value: 65.97037037037038
          - type: nauc_map_at_1000_diff1
            value: 69.02219987684592
          - type: nauc_map_at_1000_max
            value: 60.114123597785785
          - type: nauc_map_at_1000_std
            value: 4.880216382742553
          - type: nauc_map_at_100_diff1
            value: 69.01116363727591
          - type: nauc_map_at_100_max
            value: 60.11716622079215
          - type: nauc_map_at_100_std
            value: 4.890393343425179
          - type: nauc_map_at_10_diff1
            value: 68.95240309900163
          - type: nauc_map_at_10_max
            value: 60.124170478386105
          - type: nauc_map_at_10_std
            value: 4.819161459028938
          - type: nauc_map_at_1_diff1
            value: 72.45335820895522
          - type: nauc_map_at_1_max
            value: 59.127316006176
          - type: nauc_map_at_1_std
            value: 6.580191713844538
          - type: nauc_map_at_20_diff1
            value: 68.87249492072671
          - type: nauc_map_at_20_max
            value: 60.04834608184139
          - type: nauc_map_at_20_std
            value: 4.807958211395879
          - type: nauc_map_at_3_diff1
            value: 69.38092756897547
          - type: nauc_map_at_3_max
            value: 60.30271451423346
          - type: nauc_map_at_3_std
            value: 3.9374045068220322
          - type: nauc_map_at_5_diff1
            value: 69.10875854889262
          - type: nauc_map_at_5_max
            value: 60.24557626138646
          - type: nauc_map_at_5_std
            value: 4.271289591515184
          - type: nauc_mrr_at_1000_diff1
            value: 69.02219987684592
          - type: nauc_mrr_at_1000_max
            value: 60.114123597785785
          - type: nauc_mrr_at_1000_std
            value: 4.880216382742553
          - type: nauc_mrr_at_100_diff1
            value: 69.01116363727591
          - type: nauc_mrr_at_100_max
            value: 60.11716622079215
          - type: nauc_mrr_at_100_std
            value: 4.890393343425179
          - type: nauc_mrr_at_10_diff1
            value: 68.95240309900163
          - type: nauc_mrr_at_10_max
            value: 60.124170478386105
          - type: nauc_mrr_at_10_std
            value: 4.819161459028938
          - type: nauc_mrr_at_1_diff1
            value: 72.45335820895522
          - type: nauc_mrr_at_1_max
            value: 59.127316006176
          - type: nauc_mrr_at_1_std
            value: 6.580191713844538
          - type: nauc_mrr_at_20_diff1
            value: 68.87249492072671
          - type: nauc_mrr_at_20_max
            value: 60.04834608184139
          - type: nauc_mrr_at_20_std
            value: 4.807958211395879
          - type: nauc_mrr_at_3_diff1
            value: 69.38092756897547
          - type: nauc_mrr_at_3_max
            value: 60.30271451423346
          - type: nauc_mrr_at_3_std
            value: 3.9374045068220322
          - type: nauc_mrr_at_5_diff1
            value: 69.10875854889262
          - type: nauc_mrr_at_5_max
            value: 60.24557626138646
          - type: nauc_mrr_at_5_std
            value: 4.271289591515184
          - type: nauc_ndcg_at_1000_diff1
            value: 68.36151731152576
          - type: nauc_ndcg_at_1000_max
            value: 60.21499073164881
          - type: nauc_ndcg_at_1000_std
            value: 5.019374170320369
          - type: nauc_ndcg_at_100_diff1
            value: 68.12777182930174
          - type: nauc_ndcg_at_100_max
            value: 60.293069076013296
          - type: nauc_ndcg_at_100_std
            value: 5.375522795479381
          - type: nauc_ndcg_at_10_diff1
            value: 67.46914440211127
          - type: nauc_ndcg_at_10_max
            value: 60.210209508170976
          - type: nauc_ndcg_at_10_std
            value: 4.921793458534013
          - type: nauc_ndcg_at_1_diff1
            value: 72.45335820895522
          - type: nauc_ndcg_at_1_max
            value: 59.127316006176
          - type: nauc_ndcg_at_1_std
            value: 6.580191713844538
          - type: nauc_ndcg_at_20_diff1
            value: 67.09692054164125
          - type: nauc_ndcg_at_20_max
            value: 59.89689460185056
          - type: nauc_ndcg_at_20_std
            value: 4.977631579372532
          - type: nauc_ndcg_at_3_diff1
            value: 68.54468748113734
          - type: nauc_ndcg_at_3_max
            value: 60.66886257099051
          - type: nauc_ndcg_at_3_std
            value: 3.073807310026356
          - type: nauc_ndcg_at_5_diff1
            value: 67.94441056262235
          - type: nauc_ndcg_at_5_max
            value: 60.47774252804478
          - type: nauc_ndcg_at_5_std
            value: 3.572034464519458
          - type: nauc_precision_at_1000_diff1
            value: .nan
          - type: nauc_precision_at_1000_max
            value: .nan
          - type: nauc_precision_at_1000_std
            value: .nan
          - type: nauc_precision_at_100_diff1
            value: 52.808123249299676
          - type: nauc_precision_at_100_max
            value: 65.81699346405254
          - type: nauc_precision_at_100_std
            value: 31.809056956116383
          - type: nauc_precision_at_10_diff1
            value: 59.02820830750145
          - type: nauc_precision_at_10_max
            value: 60.33787972721626
          - type: nauc_precision_at_10_std
            value: 6.405175213296739
          - type: nauc_precision_at_1_diff1
            value: 72.45335820895522
          - type: nauc_precision_at_1_max
            value: 59.127316006176
          - type: nauc_precision_at_1_std
            value: 6.580191713844538
          - type: nauc_precision_at_20_diff1
            value: 52.242994576107485
          - type: nauc_precision_at_20_max
            value: 57.56617253643015
          - type: nauc_precision_at_20_std
            value: 7.9884388212213455
          - type: nauc_precision_at_3_diff1
            value: 65.73191064426206
          - type: nauc_precision_at_3_max
            value: 61.92373010829596
          - type: nauc_precision_at_3_std
            value: 0.096317142458587
          - type: nauc_precision_at_5_diff1
            value: 63.20464039592358
          - type: nauc_precision_at_5_max
            value: 61.25721735891223
          - type: nauc_precision_at_5_std
            value: 0.7937099220392029
          - type: nauc_recall_at_1000_diff1
            value: .nan
          - type: nauc_recall_at_1000_max
            value: .nan
          - type: nauc_recall_at_1000_std
            value: .nan
          - type: nauc_recall_at_100_diff1
            value: 52.80812324929921
          - type: nauc_recall_at_100_max
            value: 65.81699346405242
          - type: nauc_recall_at_100_std
            value: 31.809056956115235
          - type: nauc_recall_at_10_diff1
            value: 59.02820830750159
          - type: nauc_recall_at_10_max
            value: 60.337879727216446
          - type: nauc_recall_at_10_std
            value: 6.405175213296646
          - type: nauc_recall_at_1_diff1
            value: 72.45335820895522
          - type: nauc_recall_at_1_max
            value: 59.127316006176
          - type: nauc_recall_at_1_std
            value: 6.580191713844538
          - type: nauc_recall_at_20_diff1
            value: 52.242994576107534
          - type: nauc_recall_at_20_max
            value: 57.56617253643034
          - type: nauc_recall_at_20_std
            value: 7.988438821221468
          - type: nauc_recall_at_3_diff1
            value: 65.73191064426209
          - type: nauc_recall_at_3_max
            value: 61.923730108295906
          - type: nauc_recall_at_3_std
            value: 0.09631714245861488
          - type: nauc_recall_at_5_diff1
            value: 63.204640395923626
          - type: nauc_recall_at_5_max
            value: 61.25721735891235
          - type: nauc_recall_at_5_std
            value: 0.7937099220392697
          - type: ndcg_at_1
            value: 57.778
          - type: ndcg_at_10
            value: 71.307
          - type: ndcg_at_100
            value: 73.942
          - type: ndcg_at_1000
            value: 74.248
          - type: ndcg_at_20
            value: 72.499
          - type: ndcg_at_3
            value: 66.95
          - type: ndcg_at_5
            value: 69.21199999999999
          - type: precision_at_1
            value: 57.778
          - type: precision_at_10
            value: 8.533
          - type: precision_at_100
            value: 0.9780000000000001
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_20
            value: 4.506
          - type: precision_at_3
            value: 24.481
          - type: precision_at_5
            value: 15.778
          - type: recall_at_1
            value: 57.778
          - type: recall_at_10
            value: 85.333
          - type: recall_at_100
            value: 97.77799999999999
          - type: recall_at_1000
            value: 100
          - type: recall_at_20
            value: 90.11099999999999
          - type: recall_at_3
            value: 73.444
          - type: recall_at_5
            value: 78.889
        task:
          type: Retrieval
      - dataset:
          config: eng_Latn-hun_Latn
          name: MTEB BelebeleRetrieval (eng_Latn-hun_Latn)
          revision: 75b399394a9803252cfec289d103de462763db7c
          split: test
          type: facebook/belebele
        metrics:
          - type: main_score
            value: 73.668
          - type: map_at_1
            value: 60.778
          - type: map_at_10
            value: 69.571
          - type: map_at_100
            value: 70.114
          - type: map_at_1000
            value: 70.124
          - type: map_at_20
            value: 69.93700000000001
          - type: map_at_3
            value: 67.778
          - type: map_at_5
            value: 68.872
          - type: mrr_at_1
            value: 60.77777777777777
          - type: mrr_at_10
            value: 69.57142857142857
          - type: mrr_at_100
            value: 70.1136336675579
          - type: mrr_at_1000
            value: 70.12432347462514
          - type: mrr_at_20
            value: 69.93690215204663
          - type: mrr_at_3
            value: 67.77777777777779
          - type: mrr_at_5
            value: 68.87222222222223
          - type: nauc_map_at_1000_diff1
            value: 70.84789011327231
          - type: nauc_map_at_1000_max
            value: 60.852088181225824
          - type: nauc_map_at_1000_std
            value: 6.549993568212846
          - type: nauc_map_at_100_diff1
            value: 70.84603146007751
          - type: nauc_map_at_100_max
            value: 60.859417397516125
          - type: nauc_map_at_100_std
            value: 6.577244018939677
          - type: nauc_map_at_10_diff1
            value: 70.71490936568583
          - type: nauc_map_at_10_max
            value: 60.94472236517367
          - type: nauc_map_at_10_std
            value: 6.53657697773106
          - type: nauc_map_at_1_diff1
            value: 74.59301032751448
          - type: nauc_map_at_1_max
            value: 59.251209223705935
          - type: nauc_map_at_1_std
            value: 6.536579330592454
          - type: nauc_map_at_20_diff1
            value: 70.69902333418673
          - type: nauc_map_at_20_max
            value: 60.84819592450007
          - type: nauc_map_at_20_std
            value: 6.487171209675751
          - type: nauc_map_at_3_diff1
            value: 70.94073456299253
          - type: nauc_map_at_3_max
            value: 61.117845574972286
          - type: nauc_map_at_3_std
            value: 5.824524654602759
          - type: nauc_map_at_5_diff1
            value: 70.64337838638826
          - type: nauc_map_at_5_max
            value: 60.69375707294804
          - type: nauc_map_at_5_std
            value: 6.1403804587682025
          - type: nauc_mrr_at_1000_diff1
            value: 70.84789011327231
          - type: nauc_mrr_at_1000_max
            value: 60.852088181225824
          - type: nauc_mrr_at_1000_std
            value: 6.549993568212846
          - type: nauc_mrr_at_100_diff1
            value: 70.84603146007751
          - type: nauc_mrr_at_100_max
            value: 60.859417397516125
          - type: nauc_mrr_at_100_std
            value: 6.577244018939677
          - type: nauc_mrr_at_10_diff1
            value: 70.71490936568583
          - type: nauc_mrr_at_10_max
            value: 60.94472236517367
          - type: nauc_mrr_at_10_std
            value: 6.53657697773106
          - type: nauc_mrr_at_1_diff1
            value: 74.59301032751448
          - type: nauc_mrr_at_1_max
            value: 59.251209223705935
          - type: nauc_mrr_at_1_std
            value: 6.536579330592454
          - type: nauc_mrr_at_20_diff1
            value: 70.69902333418673
          - type: nauc_mrr_at_20_max
            value: 60.84819592450007
          - type: nauc_mrr_at_20_std
            value: 6.487171209675751
          - type: nauc_mrr_at_3_diff1
            value: 70.94073456299253
          - type: nauc_mrr_at_3_max
            value: 61.117845574972286
          - type: nauc_mrr_at_3_std
            value: 5.824524654602759
          - type: nauc_mrr_at_5_diff1
            value: 70.64337838638826
          - type: nauc_mrr_at_5_max
            value: 60.69375707294804
          - type: nauc_mrr_at_5_std
            value: 6.1403804587682025
          - type: nauc_ndcg_at_1000_diff1
            value: 70.2568421673153
          - type: nauc_ndcg_at_1000_max
            value: 61.154155762479746
          - type: nauc_ndcg_at_1000_std
            value: 6.987492117976732
          - type: nauc_ndcg_at_100_diff1
            value: 70.23106290886678
          - type: nauc_ndcg_at_100_max
            value: 61.387176821366296
          - type: nauc_ndcg_at_100_std
            value: 7.782749694416603
          - type: nauc_ndcg_at_10_diff1
            value: 69.26227190907855
          - type: nauc_ndcg_at_10_max
            value: 61.634434826859874
          - type: nauc_ndcg_at_10_std
            value: 7.185316156791736
          - type: nauc_ndcg_at_1_diff1
            value: 74.59301032751448
          - type: nauc_ndcg_at_1_max
            value: 59.251209223705935
          - type: nauc_ndcg_at_1_std
            value: 6.536579330592454
          - type: nauc_ndcg_at_20_diff1
            value: 69.1954116973286
          - type: nauc_ndcg_at_20_max
            value: 61.38887961478062
          - type: nauc_ndcg_at_20_std
            value: 7.1318041010309585
          - type: nauc_ndcg_at_3_diff1
            value: 69.75775816678905
          - type: nauc_ndcg_at_3_max
            value: 61.67436817540673
          - type: nauc_ndcg_at_3_std
            value: 5.650531149732009
          - type: nauc_ndcg_at_5_diff1
            value: 69.1651947412561
          - type: nauc_ndcg_at_5_max
            value: 60.97882565960433
          - type: nauc_ndcg_at_5_std
            value: 6.203128058155249
          - type: nauc_precision_at_1000_diff1
            value: .nan
          - type: nauc_precision_at_1000_max
            value: .nan
          - type: nauc_precision_at_1000_std
            value: .nan
          - type: nauc_precision_at_100_diff1
            value: 68.65491294557121
          - type: nauc_precision_at_100_max
            value: 80.36744109408565
          - type: nauc_precision_at_100_std
            value: 70.92327126929257
          - type: nauc_precision_at_10_diff1
            value: 61.29162638094176
          - type: nauc_precision_at_10_max
            value: 65.7264903076506
          - type: nauc_precision_at_10_std
            value: 11.47548778748128
          - type: nauc_precision_at_1_diff1
            value: 74.59301032751448
          - type: nauc_precision_at_1_max
            value: 59.251209223705935
          - type: nauc_precision_at_1_std
            value: 6.536579330592454
          - type: nauc_precision_at_20_diff1
            value: 56.51478369125409
          - type: nauc_precision_at_20_max
            value: 66.28882664176771
          - type: nauc_precision_at_20_std
            value: 14.05415499533146
          - type: nauc_precision_at_3_diff1
            value: 65.55150000975934
          - type: nauc_precision_at_3_max
            value: 63.631594870493636
          - type: nauc_precision_at_3_std
            value: 5.057287295297996
          - type: nauc_precision_at_5_diff1
            value: 62.93787770906014
          - type: nauc_precision_at_5_max
            value: 62.06285784899278
          - type: nauc_precision_at_5_std
            value: 6.577948558011871
          - type: nauc_recall_at_1000_diff1
            value: .nan
          - type: nauc_recall_at_1000_max
            value: .nan
          - type: nauc_recall_at_1000_std
            value: .nan
          - type: nauc_recall_at_100_diff1
            value: 68.6549129455701
          - type: nauc_recall_at_100_max
            value: 80.36744109408454
          - type: nauc_recall_at_100_std
            value: 70.92327126929207
          - type: nauc_recall_at_10_diff1
            value: 61.29162638094184
          - type: nauc_recall_at_10_max
            value: 65.72649030765079
          - type: nauc_recall_at_10_std
            value: 11.475487787481537
          - type: nauc_recall_at_1_diff1
            value: 74.59301032751448
          - type: nauc_recall_at_1_max
            value: 59.251209223705935
          - type: nauc_recall_at_1_std
            value: 6.536579330592454
          - type: nauc_recall_at_20_diff1
            value: 56.514783691254266
          - type: nauc_recall_at_20_max
            value: 66.28882664176774
          - type: nauc_recall_at_20_std
            value: 14.054154995331741
          - type: nauc_recall_at_3_diff1
            value: 65.55150000975928
          - type: nauc_recall_at_3_max
            value: 63.63159487049364
          - type: nauc_recall_at_3_std
            value: 5.05728729529798
          - type: nauc_recall_at_5_diff1
            value: 62.937877709060295
          - type: nauc_recall_at_5_max
            value: 62.06285784899285
          - type: nauc_recall_at_5_std
            value: 6.577948558011953
          - type: ndcg_at_1
            value: 60.778
          - type: ndcg_at_10
            value: 73.668
          - type: ndcg_at_100
            value: 76.21
          - type: ndcg_at_1000
            value: 76.459
          - type: ndcg_at_20
            value: 74.993
          - type: ndcg_at_3
            value: 70.00800000000001
          - type: ndcg_at_5
            value: 71.978
          - type: precision_at_1
            value: 60.778
          - type: precision_at_10
            value: 8.644
          - type: precision_at_100
            value: 0.9809999999999999
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_20
            value: 4.583
          - type: precision_at_3
            value: 25.480999999999998
          - type: precision_at_5
            value: 16.244
          - type: recall_at_1
            value: 60.778
          - type: recall_at_10
            value: 86.444
          - type: recall_at_100
            value: 98.111
          - type: recall_at_1000
            value: 100
          - type: recall_at_20
            value: 91.667
          - type: recall_at_3
            value: 76.444
          - type: recall_at_5
            value: 81.22200000000001
        task:
          type: Retrieval
      - dataset:
          config: eng_Latn-hun_Latn
          name: MTEB BibleNLPBitextMining (eng_Latn-hun_Latn)
          revision: 264a18480c529d9e922483839b4b9758e690b762
          split: train
          type: davidstap/biblenlp-corpus-mmteb
        metrics:
          - type: accuracy
            value: 88.671875
          - type: f1
            value: 85.859375
          - type: main_score
            value: 85.859375
          - type: precision
            value: 84.71354166666667
          - type: recall
            value: 88.671875
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-eng_Latn
          name: MTEB BibleNLPBitextMining (hun_Latn-eng_Latn)
          revision: 264a18480c529d9e922483839b4b9758e690b762
          split: train
          type: davidstap/biblenlp-corpus-mmteb
        metrics:
          - type: accuracy
            value: 91.796875
          - type: f1
            value: 89.41406249999999
          - type: main_score
            value: 89.41406249999999
          - type: precision
            value: 88.31380208333334
          - type: recall
            value: 91.796875
        task:
          type: BitextMining
      - dataset:
          config: default
          name: MTEB HunSum2AbstractiveRetrieval (default)
          revision: 24e1445c8180d937f0a16f8ae8a62e77cc952e56
          split: test
          type: SZTAKI-HLT/HunSum-2-abstractive
        metrics:
          - type: main_score
            value: 63.263000000000005
          - type: map_at_1
            value: 63.263000000000005
          - type: map_at_10
            value: 69.717
          - type: map_at_100
            value: 70.19999999999999
          - type: map_at_1000
            value: 70.223
          - type: map_at_20
            value: 69.987
          - type: map_at_3
            value: 68.126
          - type: map_at_5
            value: 69.11500000000001
          - type: mrr_at_1
            value: 63.263263263263255
          - type: mrr_at_10
            value: 69.71656179989505
          - type: mrr_at_100
            value: 70.20005091433352
          - type: mrr_at_1000
            value: 70.22300238535382
          - type: mrr_at_20
            value: 69.98650484718584
          - type: mrr_at_3
            value: 68.12645979312641
          - type: mrr_at_5
            value: 69.11494828161491
          - type: nauc_map_at_1000_diff1
            value: 78.57062147162597
          - type: nauc_map_at_1000_max
            value: 67.50701502337495
          - type: nauc_map_at_1000_std
            value: -0.5617129044803558
          - type: nauc_map_at_100_diff1
            value: 78.55994402867587
          - type: nauc_map_at_100_max
            value: 67.50751346612932
          - type: nauc_map_at_100_std
            value: -0.5527533150571393
          - type: nauc_map_at_10_diff1
            value: 78.40366721771652
          - type: nauc_map_at_10_max
            value: 67.49241622659412
          - type: nauc_map_at_10_std
            value: -0.48552097268197614
          - type: nauc_map_at_1_diff1
            value: 82.01486923813978
          - type: nauc_map_at_1_max
            value: 65.96265600324601
          - type: nauc_map_at_1_std
            value: -3.3920974069100702
          - type: nauc_map_at_20_diff1
            value: 78.47160921094391
          - type: nauc_map_at_20_max
            value: 67.53010937556571
          - type: nauc_map_at_20_std
            value: -0.5304810036230149
          - type: nauc_map_at_3_diff1
            value: 78.82728109994231
          - type: nauc_map_at_3_max
            value: 67.67886259360823
          - type: nauc_map_at_3_std
            value: -0.8390404611287001
          - type: nauc_map_at_5_diff1
            value: 78.64851152021848
          - type: nauc_map_at_5_max
            value: 67.56443643847581
          - type: nauc_map_at_5_std
            value: -0.5438994708241538
          - type: nauc_mrr_at_1000_diff1
            value: 78.57062147162597
          - type: nauc_mrr_at_1000_max
            value: 67.50701502337495
          - type: nauc_mrr_at_1000_std
            value: -0.5617129044803558
          - type: nauc_mrr_at_100_diff1
            value: 78.55994402867587
          - type: nauc_mrr_at_100_max
            value: 67.50751346612932
          - type: nauc_mrr_at_100_std
            value: -0.5527533150571393
          - type: nauc_mrr_at_10_diff1
            value: 78.40366721771652
          - type: nauc_mrr_at_10_max
            value: 67.49241622659412
          - type: nauc_mrr_at_10_std
            value: -0.48552097268197614
          - type: nauc_mrr_at_1_diff1
            value: 82.01486923813978
          - type: nauc_mrr_at_1_max
            value: 65.96265600324601
          - type: nauc_mrr_at_1_std
            value: -3.3920974069100702
          - type: nauc_mrr_at_20_diff1
            value: 78.47160921094391
          - type: nauc_mrr_at_20_max
            value: 67.53010937556571
          - type: nauc_mrr_at_20_std
            value: -0.5304810036230149
          - type: nauc_mrr_at_3_diff1
            value: 78.82728109994231
          - type: nauc_mrr_at_3_max
            value: 67.67886259360823
          - type: nauc_mrr_at_3_std
            value: -0.8390404611287001
          - type: nauc_mrr_at_5_diff1
            value: 78.64851152021848
          - type: nauc_mrr_at_5_max
            value: 67.56443643847581
          - type: nauc_mrr_at_5_std
            value: -0.5438994708241538
          - type: nauc_ndcg_at_1000_diff1
            value: 77.85313935589254
          - type: nauc_ndcg_at_1000_max
            value: 67.79745016701565
          - type: nauc_ndcg_at_1000_std
            value: 0.3743893992928968
          - type: nauc_ndcg_at_100_diff1
            value: 77.54895730138853
          - type: nauc_ndcg_at_100_max
            value: 67.90017248869928
          - type: nauc_ndcg_at_100_std
            value: 0.859162358234398
          - type: nauc_ndcg_at_10_diff1
            value: 76.71113405671676
          - type: nauc_ndcg_at_10_max
            value: 67.96034182778398
          - type: nauc_ndcg_at_10_std
            value: 1.1822837192182254
          - type: nauc_ndcg_at_1_diff1
            value: 82.01486923813978
          - type: nauc_ndcg_at_1_max
            value: 65.96265600324601
          - type: nauc_ndcg_at_1_std
            value: -3.3920974069100702
          - type: nauc_ndcg_at_20_diff1
            value: 76.93959621702203
          - type: nauc_ndcg_at_20_max
            value: 68.11195662698223
          - type: nauc_ndcg_at_20_std
            value: 1.04309687394849
          - type: nauc_ndcg_at_3_diff1
            value: 77.79565059957739
          - type: nauc_ndcg_at_3_max
            value: 68.28729385816999
          - type: nauc_ndcg_at_3_std
            value: 0.2325515867720005
          - type: nauc_ndcg_at_5_diff1
            value: 77.37740780039985
          - type: nauc_ndcg_at_5_max
            value: 68.0591693716456
          - type: nauc_ndcg_at_5_std
            value: 0.8419316054801026
          - type: nauc_precision_at_1000_diff1
            value: 70.06119288295852
          - type: nauc_precision_at_1000_max
            value: 56.300969751588504
          - type: nauc_precision_at_1000_std
            value: 42.8131104675957
          - type: nauc_precision_at_100_diff1
            value: 67.53252742986358
          - type: nauc_precision_at_100_max
            value: 71.63984328411749
          - type: nauc_precision_at_100_std
            value: 20.467710864542678
          - type: nauc_precision_at_10_diff1
            value: 68.62375685620702
          - type: nauc_precision_at_10_max
            value: 70.02532507228068
          - type: nauc_precision_at_10_std
            value: 9.35439782317633
          - type: nauc_precision_at_1_diff1
            value: 82.01486923813978
          - type: nauc_precision_at_1_max
            value: 65.96265600324601
          - type: nauc_precision_at_1_std
            value: -3.3920974069100702
          - type: nauc_precision_at_20_diff1
            value: 67.96187481073133
          - type: nauc_precision_at_20_max
            value: 71.59854027319963
          - type: nauc_precision_at_20_std
            value: 10.641909874113086
          - type: nauc_precision_at_3_diff1
            value: 74.38802810704372
          - type: nauc_precision_at_3_max
            value: 70.31804260818862
          - type: nauc_precision_at_3_std
            value: 3.8694413447531946
          - type: nauc_precision_at_5_diff1
            value: 72.53680275396366
          - type: nauc_precision_at_5_max
            value: 69.84127154759457
          - type: nauc_precision_at_5_std
            value: 6.232801743816592
          - type: nauc_recall_at_1000_diff1
            value: 70.06119288296337
          - type: nauc_recall_at_1000_max
            value: 56.30096975158339
          - type: nauc_recall_at_1000_std
            value: 42.81311046760523
          - type: nauc_recall_at_100_diff1
            value: 67.53252742986345
          - type: nauc_recall_at_100_max
            value: 71.63984328411706
          - type: nauc_recall_at_100_std
            value: 20.46771086454334
          - type: nauc_recall_at_10_diff1
            value: 68.62375685620707
          - type: nauc_recall_at_10_max
            value: 70.02532507228068
          - type: nauc_recall_at_10_std
            value: 9.354397823176459
          - type: nauc_recall_at_1_diff1
            value: 82.01486923813978
          - type: nauc_recall_at_1_max
            value: 65.96265600324601
          - type: nauc_recall_at_1_std
            value: -3.3920974069100702
          - type: nauc_recall_at_20_diff1
            value: 67.96187481073152
          - type: nauc_recall_at_20_max
            value: 71.59854027319979
          - type: nauc_recall_at_20_std
            value: 10.641909874113258
          - type: nauc_recall_at_3_diff1
            value: 74.3880281070437
          - type: nauc_recall_at_3_max
            value: 70.31804260818865
          - type: nauc_recall_at_3_std
            value: 3.8694413447530995
          - type: nauc_recall_at_5_diff1
            value: 72.53680275396374
          - type: nauc_recall_at_5_max
            value: 69.84127154759464
          - type: nauc_recall_at_5_std
            value: 6.232801743816686
          - type: ndcg_at_1
            value: 63.263000000000005
          - type: ndcg_at_10
            value: 72.89099999999999
          - type: ndcg_at_100
            value: 75.421
          - type: ndcg_at_1000
            value: 76.027
          - type: ndcg_at_20
            value: 73.919
          - type: ndcg_at_3
            value: 69.646
          - type: ndcg_at_5
            value: 71.434
          - type: precision_at_1
            value: 63.263000000000005
          - type: precision_at_10
            value: 8.288
          - type: precision_at_100
            value: 0.95
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_20
            value: 4.352
          - type: precision_at_3
            value: 24.675
          - type: precision_at_5
            value: 15.676000000000002
          - type: recall_at_1
            value: 63.263000000000005
          - type: recall_at_10
            value: 82.883
          - type: recall_at_100
            value: 95.045
          - type: recall_at_1000
            value: 99.8
          - type: recall_at_20
            value: 87.03699999999999
          - type: recall_at_3
            value: 74.024
          - type: recall_at_5
            value: 78.378
        task:
          type: Retrieval
      - dataset:
          config: hu
          name: MTEB MassiveIntentClassification (hu)
          revision: 4672e20407010da34463acc759c162ca9734bca6
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 60.08406186953599
          - type: f1
            value: 56.958742875652455
          - type: f1_weighted
            value: 60.57068245324919
          - type: main_score
            value: 60.08406186953599
        task:
          type: Classification
      - dataset:
          config: hu
          name: MTEB MassiveIntentClassification (hu)
          revision: 4672e20407010da34463acc759c162ca9734bca6
          split: validation
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 60.201672405312344
          - type: f1
            value: 57.03816512332761
          - type: f1_weighted
            value: 60.53109947438201
          - type: main_score
            value: 60.201672405312344
        task:
          type: Classification
      - dataset:
          config: hu
          name: MTEB MassiveScenarioClassification (hu)
          revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 66.61398789509079
          - type: f1
            value: 65.88647044935249
          - type: f1_weighted
            value: 66.80145146976484
          - type: main_score
            value: 66.61398789509079
        task:
          type: Classification
      - dataset:
          config: hu
          name: MTEB MassiveScenarioClassification (hu)
          revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
          split: validation
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 66.11411706837187
          - type: f1
            value: 65.76717397996951
          - type: f1_weighted
            value: 66.29902597756885
          - type: main_score
            value: 66.11411706837187
        task:
          type: Classification
      - dataset:
          config: hu
          name: MTEB MultiEURLEXMultilabelClassification (hu)
          revision: 2aea5a6dc8fdcfeca41d0fb963c0a338930bde5c
          split: test
          type: mteb/eurlex-multilingual
        metrics:
          - type: accuracy
            value: 3.0839999999999996
          - type: f1
            value: 27.860225486785566
          - type: lrap
            value: 43.02579150793552
          - type: main_score
            value: 3.0839999999999996
        task:
          type: MultilabelClassification
      - dataset:
          config: arb_Arab-hun_Latn
          name: MTEB NTREXBitextMining (arb_Arab-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 85.678517776665
          - type: f1
            value: 81.92049979731502
          - type: main_score
            value: 81.92049979731502
          - type: precision
            value: 80.21115005842097
          - type: recall
            value: 85.678517776665
        task:
          type: BitextMining
      - dataset:
          config: ben_Beng-hun_Latn
          name: MTEB NTREXBitextMining (ben_Beng-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 44.566850275413124
          - type: f1
            value: 39.07033025889276
          - type: main_score
            value: 39.07033025889276
          - type: precision
            value: 37.07348327291399
          - type: recall
            value: 44.566850275413124
        task:
          type: BitextMining
      - dataset:
          config: deu_Latn-hun_Latn
          name: MTEB NTREXBitextMining (deu_Latn-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 93.44016024036054
          - type: f1
            value: 91.61909530963112
          - type: main_score
            value: 91.61909530963112
          - type: precision
            value: 90.75279586045735
          - type: recall
            value: 93.44016024036054
        task:
          type: BitextMining
      - dataset:
          config: ell_Grek-hun_Latn
          name: MTEB NTREXBitextMining (ell_Grek-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 91.4371557336004
          - type: f1
            value: 89.0261582850466
          - type: main_score
            value: 89.0261582850466
          - type: precision
            value: 87.9043565348022
          - type: recall
            value: 91.4371557336004
        task:
          type: BitextMining
      - dataset:
          config: eng_Latn-hun_Latn
          name: MTEB NTREXBitextMining (eng_Latn-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 94.44166249374061
          - type: f1
            value: 92.8092138207311
          - type: main_score
            value: 92.8092138207311
          - type: precision
            value: 92.0422300116842
          - type: recall
            value: 94.44166249374061
        task:
          type: BitextMining
      - dataset:
          config: fas_Arab-hun_Latn
          name: MTEB NTREXBitextMining (fas_Arab-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 89.53430145217827
          - type: f1
            value: 86.72270310227245
          - type: main_score
            value: 86.72270310227245
          - type: precision
            value: 85.42814221331997
          - type: recall
            value: 89.53430145217827
        task:
          type: BitextMining
      - dataset:
          config: fin_Latn-hun_Latn
          name: MTEB NTREXBitextMining (fin_Latn-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 90.98647971957938
          - type: f1
            value: 88.44600233683859
          - type: main_score
            value: 88.44600233683859
          - type: precision
            value: 87.2575529961609
          - type: recall
            value: 90.98647971957938
        task:
          type: BitextMining
      - dataset:
          config: fra_Latn-hun_Latn
          name: MTEB NTREXBitextMining (fra_Latn-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 92.28843264897347
          - type: f1
            value: 90.12518778167251
          - type: main_score
            value: 90.12518778167251
          - type: precision
            value: 89.12535469871473
          - type: recall
            value: 92.28843264897347
        task:
          type: BitextMining
      - dataset:
          config: heb_Hebr-hun_Latn
          name: MTEB NTREXBitextMining (heb_Hebr-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 87.33099649474211
          - type: f1
            value: 83.88582874311467
          - type: main_score
            value: 83.88582874311467
          - type: precision
            value: 82.31263562009681
          - type: recall
            value: 87.33099649474211
        task:
          type: BitextMining
      - dataset:
          config: hin_Deva-hun_Latn
          name: MTEB NTREXBitextMining (hin_Deva-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 86.52979469203805
          - type: f1
            value: 83.08240137984755
          - type: main_score
            value: 83.08240137984755
          - type: precision
            value: 81.51352028042064
          - type: recall
            value: 86.52979469203805
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-arb_Arab
          name: MTEB NTREXBitextMining (hun_Latn-arb_Arab)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 86.73009514271406
          - type: f1
            value: 83.12397167179341
          - type: main_score
            value: 83.12397167179341
          - type: precision
            value: 81.47805040894676
          - type: recall
            value: 86.73009514271406
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-ben_Beng
          name: MTEB NTREXBitextMining (hun_Latn-ben_Beng)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 41.16174261392088
          - type: f1
            value: 32.73025519520262
          - type: main_score
            value: 32.73025519520262
          - type: precision
            value: 29.859172986363774
          - type: recall
            value: 41.16174261392088
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-deu_Latn
          name: MTEB NTREXBitextMining (hun_Latn-deu_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 93.39008512769153
          - type: f1
            value: 91.5456518110499
          - type: main_score
            value: 91.5456518110499
          - type: precision
            value: 90.66099148723085
          - type: recall
            value: 93.39008512769153
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-ell_Grek
          name: MTEB NTREXBitextMining (hun_Latn-ell_Grek)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 92.03805708562844
          - type: f1
            value: 89.81305291270239
          - type: main_score
            value: 89.81305291270239
          - type: precision
            value: 88.78317476214322
          - type: recall
            value: 92.03805708562844
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-eng_Latn
          name: MTEB NTREXBitextMining (hun_Latn-eng_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 94.74211316975463
          - type: f1
            value: 93.23985978968453
          - type: main_score
            value: 93.23985978968453
          - type: precision
            value: 92.51377065598398
          - type: recall
            value: 94.74211316975463
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-fas_Arab
          name: MTEB NTREXBitextMining (hun_Latn-fas_Arab)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 88.5327991987982
          - type: f1
            value: 85.49240527457853
          - type: main_score
            value: 85.49240527457853
          - type: precision
            value: 84.10413238905979
          - type: recall
            value: 88.5327991987982
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-fin_Latn
          name: MTEB NTREXBitextMining (hun_Latn-fin_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 90.23535302954431
          - type: f1
            value: 87.53296611584042
          - type: main_score
            value: 87.53296611584042
          - type: precision
            value: 86.26690035052579
          - type: recall
            value: 90.23535302954431
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-fra_Latn
          name: MTEB NTREXBitextMining (hun_Latn-fra_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 92.63895843765648
          - type: f1
            value: 90.47070605908863
          - type: main_score
            value: 90.47070605908863
          - type: precision
            value: 89.42163244867301
          - type: recall
            value: 92.63895843765648
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-heb_Hebr
          name: MTEB NTREXBitextMining (hun_Latn-heb_Hebr)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 86.62994491737606
          - type: f1
            value: 83.19388173168845
          - type: main_score
            value: 83.19388173168845
          - type: precision
            value: 81.65832081455517
          - type: recall
            value: 86.62994491737606
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-hin_Deva
          name: MTEB NTREXBitextMining (hun_Latn-hin_Deva)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 83.97596394591888
          - type: f1
            value: 79.85502062617736
          - type: main_score
            value: 79.85502062617736
          - type: precision
            value: 78.01758192844824
          - type: recall
            value: 83.97596394591888
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-ind_Latn
          name: MTEB NTREXBitextMining (hun_Latn-ind_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 92.68903355032549
          - type: f1
            value: 90.64596895343014
          - type: main_score
            value: 90.64596895343014
          - type: precision
            value: 89.68869971624103
          - type: recall
            value: 92.68903355032549
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-jpn_Jpan
          name: MTEB NTREXBitextMining (hun_Latn-jpn_Jpan)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 85.778668002003
          - type: f1
            value: 82.19829744616925
          - type: main_score
            value: 82.19829744616925
          - type: precision
            value: 80.62426973794025
          - type: recall
            value: 85.778668002003
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-kor_Hang
          name: MTEB NTREXBitextMining (hun_Latn-kor_Hang)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 84.17626439659489
          - type: f1
            value: 80.26746468909714
          - type: main_score
            value: 80.26746468909714
          - type: precision
            value: 78.5646097351155
          - type: recall
            value: 84.17626439659489
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-lav_Latn
          name: MTEB NTREXBitextMining (hun_Latn-lav_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 90.1352028042063
          - type: f1
            value: 87.30262059756302
          - type: main_score
            value: 87.30262059756302
          - type: precision
            value: 85.98731430479052
          - type: recall
            value: 90.1352028042063
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-lit_Latn
          name: MTEB NTREXBitextMining (hun_Latn-lit_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 89.58437656484726
          - type: f1
            value: 86.8252378567852
          - type: main_score
            value: 86.8252378567852
          - type: precision
            value: 85.54581872809214
          - type: recall
            value: 89.58437656484726
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-nld_Latn
          name: MTEB NTREXBitextMining (hun_Latn-nld_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 93.03955933900852
          - type: f1
            value: 91.03989317309296
          - type: main_score
            value: 91.03989317309296
          - type: precision
            value: 90.08930061759305
          - type: recall
            value: 93.03955933900852
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-pol_Latn
          name: MTEB NTREXBitextMining (hun_Latn-pol_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 91.58738107160741
          - type: f1
            value: 89.28225671841095
          - type: main_score
            value: 89.28225671841095
          - type: precision
            value: 88.18227341011517
          - type: recall
            value: 91.58738107160741
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-por_Latn
          name: MTEB NTREXBitextMining (hun_Latn-por_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 93.59038557836755
          - type: f1
            value: 91.71256885327992
          - type: main_score
            value: 91.71256885327992
          - type: precision
            value: 90.80287097312635
          - type: recall
            value: 93.59038557836755
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-rus_Cyrl
          name: MTEB NTREXBitextMining (hun_Latn-rus_Cyrl)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 91.3370055082624
          - type: f1
            value: 88.88916708395926
          - type: main_score
            value: 88.88916708395926
          - type: precision
            value: 87.75961561389704
          - type: recall
            value: 91.3370055082624
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-spa_Latn
          name: MTEB NTREXBitextMining (hun_Latn-spa_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 93.69053580370556
          - type: f1
            value: 91.94959105324652
          - type: main_score
            value: 91.94959105324652
          - type: precision
            value: 91.12418627941913
          - type: recall
            value: 93.69053580370556
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-swa_Latn
          name: MTEB NTREXBitextMining (hun_Latn-swa_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 35.803705558337505
          - type: f1
            value: 27.79832969518814
          - type: main_score
            value: 27.79832969518814
          - type: precision
            value: 25.370895920971037
          - type: recall
            value: 35.803705558337505
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-swe_Latn
          name: MTEB NTREXBitextMining (hun_Latn-swe_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 93.59038557836755
          - type: f1
            value: 91.66249374061091
          - type: main_score
            value: 91.66249374061091
          - type: precision
            value: 90.74445000834585
          - type: recall
            value: 93.59038557836755
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-tam_Taml
          name: MTEB NTREXBitextMining (hun_Latn-tam_Taml)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 27.391086629944915
          - type: f1
            value: 19.094552675413095
          - type: main_score
            value: 19.094552675413095
          - type: precision
            value: 16.88288208814635
          - type: recall
            value: 27.391086629944915
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-tur_Latn
          name: MTEB NTREXBitextMining (hun_Latn-tur_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 91.48723084626941
          - type: f1
            value: 89.11700884660323
          - type: main_score
            value: 89.11700884660323
          - type: precision
            value: 87.99031881155067
          - type: recall
            value: 91.48723084626941
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-vie_Latn
          name: MTEB NTREXBitextMining (hun_Latn-vie_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 91.13670505758637
          - type: f1
            value: 88.6696711734268
          - type: main_score
            value: 88.6696711734268
          - type: precision
            value: 87.49374061091638
          - type: recall
            value: 91.13670505758637
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-zho_Hant
          name: MTEB NTREXBitextMining (hun_Latn-zho_Hant)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 89.33400100150224
          - type: f1
            value: 86.55745523046474
          - type: main_score
            value: 86.55745523046474
          - type: precision
            value: 85.29794692038057
          - type: recall
            value: 89.33400100150224
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn-zul_Latn
          name: MTEB NTREXBitextMining (hun_Latn-zul_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 16.675012518778168
          - type: f1
            value: 11.21636405139599
          - type: main_score
            value: 11.21636405139599
          - type: precision
            value: 9.903070059112947
          - type: recall
            value: 16.675012518778168
        task:
          type: BitextMining
      - dataset:
          config: ind_Latn-hun_Latn
          name: MTEB NTREXBitextMining (ind_Latn-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 92.93940911367051
          - type: f1
            value: 90.96478050408946
          - type: main_score
            value: 90.96478050408946
          - type: precision
            value: 90.03922550492406
          - type: recall
            value: 92.93940911367051
        task:
          type: BitextMining
      - dataset:
          config: jpn_Jpan-hun_Latn
          name: MTEB NTREXBitextMining (jpn_Jpan-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 88.28242363545317
          - type: f1
            value: 85.11433817392756
          - type: main_score
            value: 85.11433817392756
          - type: precision
            value: 83.67551326990485
          - type: recall
            value: 88.28242363545317
        task:
          type: BitextMining
      - dataset:
          config: kor_Hang-hun_Latn
          name: MTEB NTREXBitextMining (kor_Hang-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 85.778668002003
          - type: f1
            value: 81.83608746453012
          - type: main_score
            value: 81.83608746453012
          - type: precision
            value: 80.0233683859122
          - type: recall
            value: 85.778668002003
        task:
          type: BitextMining
      - dataset:
          config: lav_Latn-hun_Latn
          name: MTEB NTREXBitextMining (lav_Latn-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 91.73760640961443
          - type: f1
            value: 89.42914371557336
          - type: main_score
            value: 89.42914371557336
          - type: precision
            value: 88.32832582206642
          - type: recall
            value: 91.73760640961443
        task:
          type: BitextMining
      - dataset:
          config: lit_Latn-hun_Latn
          name: MTEB NTREXBitextMining (lit_Latn-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 91.78768152228342
          - type: f1
            value: 89.50926389584376
          - type: main_score
            value: 89.50926389584376
          - type: precision
            value: 88.39926556501419
          - type: recall
            value: 91.78768152228342
        task:
          type: BitextMining
      - dataset:
          config: nld_Latn-hun_Latn
          name: MTEB NTREXBitextMining (nld_Latn-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 93.49023535302955
          - type: f1
            value: 91.6190953096311
          - type: main_score
            value: 91.6190953096311
          - type: precision
            value: 90.72775830412286
          - type: recall
            value: 93.49023535302955
        task:
          type: BitextMining
      - dataset:
          config: pol_Latn-hun_Latn
          name: MTEB NTREXBitextMining (pol_Latn-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 91.28693039559339
          - type: f1
            value: 88.99515940577533
          - type: main_score
            value: 88.99515940577533
          - type: precision
            value: 87.9293940911367
          - type: recall
            value: 91.28693039559339
        task:
          type: BitextMining
      - dataset:
          config: por_Latn-hun_Latn
          name: MTEB NTREXBitextMining (por_Latn-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 93.03955933900852
          - type: f1
            value: 91.08496077449509
          - type: main_score
            value: 91.08496077449509
          - type: precision
            value: 90.17860123518612
          - type: recall
            value: 93.03955933900852
        task:
          type: BitextMining
      - dataset:
          config: rus_Cyrl-hun_Latn
          name: MTEB NTREXBitextMining (rus_Cyrl-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 90.98647971957938
          - type: f1
            value: 88.43932565514937
          - type: main_score
            value: 88.43932565514937
          - type: precision
            value: 87.2475379736271
          - type: recall
            value: 90.98647971957938
        task:
          type: BitextMining
      - dataset:
          config: spa_Latn-hun_Latn
          name: MTEB NTREXBitextMining (spa_Latn-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 93.23985978968453
          - type: f1
            value: 91.3386746786847
          - type: main_score
            value: 91.3386746786847
          - type: precision
            value: 90.43148055416457
          - type: recall
            value: 93.23985978968453
        task:
          type: BitextMining
      - dataset:
          config: swa_Latn-hun_Latn
          name: MTEB NTREXBitextMining (swa_Latn-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 35.95393089634452
          - type: f1
            value: 30.612257939034187
          - type: main_score
            value: 30.612257939034187
          - type: precision
            value: 28.995078568906944
          - type: recall
            value: 35.95393089634452
        task:
          type: BitextMining
      - dataset:
          config: swe_Latn-hun_Latn
          name: MTEB NTREXBitextMining (swe_Latn-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 93.64046069103655
          - type: f1
            value: 91.86613253213153
          - type: main_score
            value: 91.86613253213153
          - type: precision
            value: 91.04072775830413
          - type: recall
            value: 93.64046069103655
        task:
          type: BitextMining
      - dataset:
          config: tam_Taml-hun_Latn
          name: MTEB NTREXBitextMining (tam_Taml-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 29.04356534802203
          - type: f1
            value: 25.164093122029808
          - type: main_score
            value: 25.164093122029808
          - type: precision
            value: 23.849573878565543
          - type: recall
            value: 29.04356534802203
        task:
          type: BitextMining
      - dataset:
          config: tur_Latn-hun_Latn
          name: MTEB NTREXBitextMining (tur_Latn-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 90.83625438157236
          - type: f1
            value: 88.36087464530128
          - type: main_score
            value: 88.36087464530128
          - type: precision
            value: 87.19829744616925
          - type: recall
            value: 90.83625438157236
        task:
          type: BitextMining
      - dataset:
          config: vie_Latn-hun_Latn
          name: MTEB NTREXBitextMining (vie_Latn-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 90.68602904356536
          - type: f1
            value: 88.10882991153397
          - type: main_score
            value: 88.10882991153397
          - type: precision
            value: 86.90118511099983
          - type: recall
            value: 90.68602904356536
        task:
          type: BitextMining
      - dataset:
          config: zho_Hant-hun_Latn
          name: MTEB NTREXBitextMining (zho_Hant-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 90.1352028042063
          - type: f1
            value: 87.46035720247039
          - type: main_score
            value: 87.46035720247039
          - type: precision
            value: 86.19810668383528
          - type: recall
            value: 90.1352028042063
        task:
          type: BitextMining
      - dataset:
          config: zul_Latn-hun_Latn
          name: MTEB NTREXBitextMining (zul_Latn-hun_Latn)
          revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
          split: test
          type: mteb/NTREX
        metrics:
          - type: accuracy
            value: 17.1256885327992
          - type: f1
            value: 13.692538409811572
          - type: main_score
            value: 13.692538409811572
          - type: precision
            value: 12.811084017018844
          - type: recall
            value: 17.1256885327992
        task:
          type: BitextMining
      - dataset:
          config: rom-hun
          name: MTEB RomaTalesBitextMining (rom-hun)
          revision: f4394dbca6845743cd33eba77431767b232ef489
          split: test
          type: kardosdrur/roma-tales
        metrics:
          - type: accuracy
            value: 6.046511627906977
          - type: f1
            value: 2.950830564784053
          - type: main_score
            value: 2.950830564784053
          - type: precision
            value: 2.295127353266888
          - type: recall
            value: 6.046511627906977
        task:
          type: BitextMining
      - dataset:
          config: hun_Latn
          name: MTEB SIB200Classification (hun_Latn)
          revision: a74d7350ea12af010cfb1c21e34f1f81fd2e615b
          split: test
          type: mteb/sib200
        metrics:
          - type: accuracy
            value: 72.74509803921569
          - type: f1
            value: 71.6748881571977
          - type: f1_weighted
            value: 72.7699432186266
          - type: main_score
            value: 72.74509803921569
        task:
          type: Classification
      - dataset:
          config: hun_Latn
          name: MTEB SIB200Classification (hun_Latn)
          revision: a74d7350ea12af010cfb1c21e34f1f81fd2e615b
          split: train
          type: mteb/sib200
        metrics:
          - type: accuracy
            value: 71.92582025677605
          - type: f1
            value: 70.9175403606058
          - type: f1_weighted
            value: 71.9988920000764
          - type: main_score
            value: 71.92582025677605
        task:
          type: Classification
      - dataset:
          config: hun_Latn
          name: MTEB SIB200Classification (hun_Latn)
          revision: a74d7350ea12af010cfb1c21e34f1f81fd2e615b
          split: validation
          type: mteb/sib200
        metrics:
          - type: accuracy
            value: 66.76767676767676
          - type: f1
            value: 66.07599012119566
          - type: f1_weighted
            value: 67.15823510190054
          - type: main_score
            value: 66.76767676767676
        task:
          type: Classification
      - dataset:
          config: hun_Latn
          name: MTEB SIB200ClusteringS2S (hun_Latn)
          revision: a74d7350ea12af010cfb1c21e34f1f81fd2e615b
          split: test
          type: mteb/sib200
        metrics:
          - type: main_score
            value: 39.24288169703154
          - type: v_measure
            value: 39.24288169703154
          - type: v_measure_std
            value: 2.214708184335194
        task:
          type: Clustering
      - dataset:
          config: hun-eng
          name: MTEB Tatoeba (hun-eng)
          revision: 69e8f12da6e31d59addadda9a9c8a2e601a0e282
          split: test
          type: mteb/tatoeba-bitext-mining
        metrics:
          - type: accuracy
            value: 91
          - type: f1
            value: 88.47999999999999
          - type: main_score
            value: 88.47999999999999
          - type: precision
            value: 87.3
          - type: recall
            value: 91
        task:
          type: BitextMining
tags:
  - mteb

base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 language:

  • hu library_name: sentence-transformers license: apache-2.0 metrics:
  • cosine_accuracy
  • dot_accuracy
  • manhattan_accuracy
  • euclidean_accuracy
  • max_accuracy pipeline_tag: sentence-similarity tags:
  • sentence-transformers
  • sentence-similarity
  • feature-extraction
  • generated_from_trainer
  • dataset_size:857856
  • loss:MultipleNegativesRankingLoss widget:
  • source_sentence: Emberek várnak a lámpánál kerékpárral. sentences:
    • Az emberek piros lámpánál haladnak.
    • Az emberek a kerékpárjukon vannak.
    • Egy fekete kutya úszik a vízben egy teniszlabdával a szájában
  • source_sentence: A kutya a vízben van. sentences:
    • Két férfi takarítja a havat a tetőről, az egyik egy emelőben ül, a másik pedig a tetőn.
    • A macska a vízben van, és dühös.
    • Egy kutya van a vízben, a szájában egy faág.
  • source_sentence: A nő feketét visel. sentences:
    • Egy barna kutya fröcsköl, ahogy úszik a vízben.
    • Egy tetoválással rendelkező nő, aki fekete tank tetején néz a földre.
    • 'Egy kékbe öltözött nő intenzív arckifejezéssel üti a teniszlabdát. A képen:'
  • source_sentence: Az emberek alszanak. sentences:
    • Három ember beszélget egy városi utcán.
    • A nő fehéret visel.
    • Egy apa és a fia ölelgeti alvás közben.
  • source_sentence: Az emberek alszanak. sentences:
    • Egy feketébe öltözött nő cigarettát és bevásárlótáskát tart a kezében, miközben egy idősebb nő átmegy az utcán.
    • Egy csoport ember ül egy nyitott, térszerű területen, mögötte nagy bokrok és egy sor viktoriánus stílusú épület, melyek közül sokat a kép jobb oldalán lévő erős elmosódás tesz kivehetetlenné.
    • Egy apa és a fia ölelgeti alvás közben. model-index:
  • name: paraphrase-multilingual-MiniLM-L12-hu-v1 results:
    • task: type: triplet name: Triplet dataset: name: all nli dev type: all-nli-dev metrics:
      • type: cosine_accuracy value: 0.992 name: Cosine Accuracy
      • type: dot_accuracy value: 0.0108 name: Dot Accuracy
      • type: manhattan_accuracy value: 0.9908 name: Manhattan Accuracy
      • type: euclidean_accuracy value: 0.9908 name: Euclidean Accuracy
      • type: max_accuracy value: 0.992 name: Max Accuracy
    • task: type: triplet name: Triplet dataset: name: all nli test type: all-nli-test metrics:
      • type: cosine_accuracy value: 0.9913636363636363 name: Cosine Accuracy
      • type: dot_accuracy value: 0.013939393939393939 name: Dot Accuracy
      • type: manhattan_accuracy value: 0.990909090909091 name: Manhattan Accuracy
      • type: euclidean_accuracy value: 0.9910606060606061 name: Euclidean Accuracy
      • type: max_accuracy value: 0.9913636363636363 name: Max Accuracy

paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the train dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("karsar/paraphrase-multilingual-MiniLM-L12-hu_v1")
# Run inference
sentences = [
    'Az emberek alszanak.',
    'Egy apa és a fia ölelgeti alvás közben.',
    'Egy csoport ember ül egy nyitott, térszerű területen, mögötte nagy bokrok és egy sor viktoriánus stílusú épület, melyek közül sokat a kép jobb oldalán lévő erős elmosódás tesz kivehetetlenné.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.992
dot_accuracy 0.0108
manhattan_accuracy 0.9908
euclidean_accuracy 0.9908
max_accuracy 0.992

Triplet

Metric Value
cosine_accuracy 0.9914
dot_accuracy 0.0139
manhattan_accuracy 0.9909
euclidean_accuracy 0.9911
max_accuracy 0.9914

Training Details

Training Dataset

train

  • Dataset: train
  • Size: 857,856 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 11.73 tokens
    • max: 56 tokens
    • min: 6 tokens
    • mean: 15.24 tokens
    • max: 47 tokens
    • min: 7 tokens
    • mean: 16.07 tokens
    • max: 53 tokens
  • Samples:
    anchor positive negative
    Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett. Egy ember a szabadban, lóháton. Egy ember egy étteremben van, és omlettet rendel.
    Gyerekek mosolyogva és integetett a kamera Gyermekek vannak jelen A gyerekek homlokot rántanak
    Egy fiú ugrál a gördeszkát a közepén egy piros híd. A fiú gördeszkás trükköt csinál. A fiú korcsolyázik a járdán.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

train

  • Dataset: train
  • Size: 5,000 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 11.73 tokens
    • max: 56 tokens
    • min: 6 tokens
    • mean: 15.24 tokens
    • max: 47 tokens
    • min: 7 tokens
    • mean: 16.07 tokens
    • max: 53 tokens
  • Samples:
    anchor positive negative
    Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett. Egy ember a szabadban, lóháton. Egy ember egy étteremben van, és omlettet rendel.
    Gyerekek mosolyogva és integetett a kamera Gyermekek vannak jelen A gyerekek homlokot rántanak
    Egy fiú ugrál a gördeszkát a közepén egy piros híd. A fiú gördeszkás trükköt csinál. A fiú korcsolyázik a járdán.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss train loss all-nli-dev_max_accuracy all-nli-test_max_accuracy
0 0 - - 0.7574 -
0.0149 100 2.5002 - - -
0.0298 200 1.9984 - - -
0.0448 300 1.8094 - - -
0.0597 400 1.6704 - - -
0.0746 500 1.5518 - - -
0.0895 600 1.449 - - -
0.1044 700 1.5998 - - -
0.1194 800 1.5725 - - -
0.1343 900 1.5341 - - -
0.1492 1000 1.3423 - - -
0.1641 1100 1.2485 - - -
0.1791 1200 1.1527 - - -
0.1940 1300 1.1672 - - -
0.2089 1400 1.2426 - - -
0.2238 1500 1.0948 - - -
0.2387 1600 1.0069 - - -
0.2537 1700 0.976 - - -
0.2686 1800 0.897 - - -
0.2835 1900 0.7825 - - -
0.2984 2000 0.9421 0.1899 0.9568 -
0.3133 2100 0.8651 - - -
0.3283 2200 0.8184 - - -
0.3432 2300 0.699 - - -
0.3581 2400 0.6704 - - -
0.3730 2500 0.6477 - - -
0.3879 2600 0.7077 - - -
0.4029 2700 0.7364 - - -
0.4178 2800 0.665 - - -
0.4327 2900 1.2512 - - -
0.4476 3000 1.3693 - - -
0.4625 3100 1.3959 - - -
0.4775 3200 1.4175 - - -
0.4924 3300 1.402 - - -
0.5073 3400 1.3832 - - -
0.5222 3500 1.3671 - - -
0.5372 3600 1.3666 - - -
0.5521 3700 1.3479 - - -
0.5670 3800 1.3272 - - -
0.5819 3900 1.3353 - - -
0.5968 4000 1.3177 0.0639 0.9902 -
0.6118 4100 1.3068 - - -
0.6267 4200 1.3054 - - -
0.6416 4300 1.3098 - - -
0.6565 4400 1.2839 - - -
0.6714 4500 1.2976 - - -
0.6864 4600 1.2669 - - -
0.7013 4700 1.208 - - -
0.7162 4800 1.194 - - -
0.7311 4900 1.1974 - - -
0.7460 5000 1.1834 - - -
0.7610 5100 1.1876 - - -
0.7759 5200 1.1743 - - -
0.7908 5300 1.1839 - - -
0.8057 5400 1.1778 - - -
0.8207 5500 1.1711 - - -
0.8356 5600 1.1809 - - -
0.8505 5700 1.1825 - - -
0.8654 5800 1.1795 - - -
0.8803 5900 1.1788 - - -
0.8953 6000 1.1819 0.0371 0.992 -
0.9102 6100 1.1741 - - -
0.9251 6200 1.1871 - - -
0.9400 6300 0.498 - - -
0.9549 6400 0.093 - - -
0.9699 6500 0.1597 - - -
0.9848 6600 0.2033 - - -
0.9997 6700 0.16 - - -
1.0 6702 - - - 0.9914

Framework Versions

  • Python: 3.11.8
  • Sentence Transformers: 3.1.1
  • Transformers: 4.44.0
  • PyTorch: 2.3.0.post101
  • Accelerate: 0.33.0
  • Datasets: 2.18.0
  • Tokenizers: 0.19.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}