TrOCR-SIN-DeiT-Handwritten-Beam10

This model is a fine-tuned version of kavg/TrOCR-SIN-DeiT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2754
  • Cer: 0.5246

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2400
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss
0.9957 1.75 100 0.6176 1.6796
0.0678 3.51 200 0.5996 1.7777
0.1315 5.26 300 0.6794 2.1444
0.0668 7.02 400 0.6363 2.0162
0.0656 8.77 500 0.6046 1.9573
0.0612 10.53 600 0.6330 1.9388
0.0454 12.28 700 0.6679 3.0649
0.004 14.04 800 0.5814 2.0252
0.0034 15.79 900 0.5492 2.0399
0.0336 17.54 1000 0.6041 2.9769
0.0135 19.3 1100 0.5742 1.9405
0.0012 21.05 1200 0.5959 2.5722
0.0143 22.81 1300 0.5527 2.0862
0.0018 24.56 1400 0.5764 2.4146
0.0064 26.32 1500 0.5647 2.0710
0.0006 28.07 1600 0.5472 2.1849
0.0004 29.82 1700 0.5547 2.4497
0.0001 31.58 1800 0.5430 2.0830
0.0215 33.33 1900 0.5560 2.5979
0.0 35.09 2000 0.5525 2.4792
0.0 36.84 2100 0.5428 2.4779
0.0 38.6 2200 0.5438 2.7873
0.0 40.35 2300 0.5552 2.9236
0.0 42.11 2400 0.5246 2.2754

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1
Downloads last month
10
Safetensors
Model size
241M params
Tensor type
F32
·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for kavg/TrOCR-SIN-DeiT-Handwritten-Beam10

Finetuned
(4)
this model