keatrean's picture
swearwords-detection-model
e121d6b verified
metadata
library_name: transformers
base_model: DeepPavlov/rubert-base-cased-conversational
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert_ner_output
    results: []

bert_ner_output

This model is a fine-tuned version of DeepPavlov/rubert-base-cased-conversational on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0114
  • Precision: 0.9004
  • Recall: 0.9049
  • F1: 0.9026
  • Accuracy: 0.9972

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0038 1.0 6119 0.0109 0.8962 0.9070 0.9016 0.9972
0.0193 2.0 12238 0.0114 0.9004 0.9049 0.9026 0.9972

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3