vit-emotion

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1858
  • Accuracy: 0.6188

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8403 1.0 40 1.7317 0.3063
1.4783 2.0 80 1.5047 0.4938
1.1866 3.0 120 1.3522 0.55
0.8581 4.0 160 1.2084 0.575
0.6056 5.0 200 1.2348 0.5375
0.3745 6.0 240 1.2119 0.5625
0.2129 7.0 280 1.2012 0.5437
0.1547 8.0 320 1.2181 0.5875
0.1216 9.0 360 1.2196 0.5875
0.1023 10.0 400 1.1858 0.6188
0.102 11.0 440 1.2190 0.5938
0.083 12.0 480 1.2149 0.6125
0.0917 13.0 520 1.2600 0.5875
0.0807 14.0 560 1.2367 0.6062
0.0741 15.0 600 1.2382 0.6
0.0721 16.0 640 1.2464 0.5875
0.0678 17.0 680 1.2548 0.5938
0.0752 18.0 720 1.2591 0.5875
0.0657 19.0 760 1.2590 0.6062
0.0643 20.0 800 1.2589 0.5938

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for kendrickfff/vit-emotion

Finetuned
(1784)
this model

Evaluation results