vit-emotion / README.md
kendrickfff's picture
End of training
82a3efb verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-emotion
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.61875

vit-emotion

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1858
  • Accuracy: 0.6188

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8403 1.0 40 1.7317 0.3063
1.4783 2.0 80 1.5047 0.4938
1.1866 3.0 120 1.3522 0.55
0.8581 4.0 160 1.2084 0.575
0.6056 5.0 200 1.2348 0.5375
0.3745 6.0 240 1.2119 0.5625
0.2129 7.0 280 1.2012 0.5437
0.1547 8.0 320 1.2181 0.5875
0.1216 9.0 360 1.2196 0.5875
0.1023 10.0 400 1.1858 0.6188
0.102 11.0 440 1.2190 0.5938
0.083 12.0 480 1.2149 0.6125
0.0917 13.0 520 1.2600 0.5875
0.0807 14.0 560 1.2367 0.6062
0.0741 15.0 600 1.2382 0.6
0.0721 16.0 640 1.2464 0.5875
0.0678 17.0 680 1.2548 0.5938
0.0752 18.0 720 1.2591 0.5875
0.0657 19.0 760 1.2590 0.6062
0.0643 20.0 800 1.2589 0.5938

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1