metadata
language:
- ko
tags:
- generated_from_keras_callback
model-index:
- name: t5-large-korean-P2G
results: []
t5-large-korean-P2G
์ด ๋ชจ๋ธ์ lcw99 / t5-large-korean-text-summary์ ๊ตญ๋ฆฝ ๊ตญ์ด์ ์ ๋ฌธ ๋ง๋ญ์น 50๋ง๊ฐ์ ๋ฌธ์ฅ์ 2021์ g2pK๋ก ํ๋ จ์์ผ G2P๋ ๋ฐ์ดํฐ๋ฅผ ์๋ณธ์ผ๋ก ๋๋ฆฝ๋๋ค.
git : https://github.com/taemin6697
Usage
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model_dir = "kfkas/t5-large-korean-P2G"
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForSeq2SeqLM.from_pretrained(model_dir)
text = "์๊ท์๊ตญ ์ธ์ฐ๋ ํ์๊ดยทํ๋
๋นจ์ฉ ์ค์ฌ์ง ๋ ๊ป"
inputs = tokenizer.encode(text,return_tensors="pt")
output = model.generate(inputs)
decoded_output = tokenizer.batch(output[0], skip_special_tokens=True)
print(decoded_output)#์์ ์๊ตญ ์ฌ์ฐ๋ ํ์๊ดยทํ๋ ฅ ๋ฐ์ ์ค์ฌ์ง ๋ ๊ฒ
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: None
- training_precision: float16
Training results
Framework versions
- Transformers 4.22.1
- TensorFlow 2.10.0
- Datasets 2.5.1
- Tokenizers 0.12.1