File size: 4,864 Bytes
0035e5a
 
 
 
 
 
7356ed1
 
 
0035e5a
 
 
 
 
 
 
 
 
 
 
 
b7fc2bd
 
 
 
 
0035e5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
072f8cc
0035e5a
 
 
10e1454
0035e5a
 
 
 
7356ed1
 
b7fc2bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0035e5a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: vit-base-skin
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-skin

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6206
- Accuracy: 0.8705
- F1: 0.8684
- Precision: 0.8850
- Recall: 0.8705

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.8057        | 0.16  | 100  | 0.7591          | 0.7254   | 0.6902 | 0.6779    | 0.7254 |
| 0.7619        | 0.32  | 200  | 0.7081          | 0.7409   | 0.6953 | 0.6920    | 0.7409 |
| 0.6315        | 0.48  | 300  | 0.5954          | 0.8135   | 0.8039 | 0.8688    | 0.8135 |
| 0.8311        | 0.64  | 400  | 0.5974          | 0.7927   | 0.7806 | 0.7985    | 0.7927 |
| 0.5666        | 0.8   | 500  | 0.6151          | 0.7720   | 0.7727 | 0.7903    | 0.7720 |
| 0.5816        | 0.96  | 600  | 0.4912          | 0.8031   | 0.7440 | 0.7008    | 0.8031 |
| 0.3715        | 1.12  | 700  | 0.5772          | 0.7979   | 0.7764 | 0.8024    | 0.7979 |
| 0.5411        | 1.28  | 800  | 0.5024          | 0.8342   | 0.8301 | 0.8447    | 0.8342 |
| 0.474         | 1.44  | 900  | 0.4374          | 0.8342   | 0.8196 | 0.8260    | 0.8342 |
| 0.4386        | 1.6   | 1000 | 0.6611          | 0.7565   | 0.7808 | 0.8456    | 0.7565 |
| 0.4091        | 1.76  | 1100 | 0.5261          | 0.8031   | 0.7855 | 0.8288    | 0.8031 |
| 0.4023        | 1.92  | 1200 | 0.4279          | 0.8446   | 0.8462 | 0.8687    | 0.8446 |
| 0.28          | 2.08  | 1300 | 0.5927          | 0.8238   | 0.8023 | 0.8468    | 0.8238 |
| 0.2408        | 2.24  | 1400 | 0.4605          | 0.8446   | 0.8399 | 0.8503    | 0.8446 |
| 0.2145        | 2.4   | 1500 | 0.4865          | 0.8342   | 0.8399 | 0.8575    | 0.8342 |
| 0.3194        | 2.56  | 1600 | 0.4727          | 0.8497   | 0.8435 | 0.8476    | 0.8497 |
| 0.2391        | 2.72  | 1700 | 0.4676          | 0.8446   | 0.8402 | 0.8423    | 0.8446 |
| 0.1828        | 2.88  | 1800 | 0.4337          | 0.8601   | 0.8625 | 0.8709    | 0.8601 |
| 0.1232        | 3.04  | 1900 | 0.4549          | 0.8601   | 0.8646 | 0.8726    | 0.8601 |
| 0.0929        | 3.19  | 2000 | 0.5939          | 0.8497   | 0.8521 | 0.8606    | 0.8497 |
| 0.0559        | 3.35  | 2100 | 0.5807          | 0.8290   | 0.8237 | 0.8243    | 0.8290 |
| 0.1833        | 3.51  | 2200 | 0.5235          | 0.8601   | 0.8610 | 0.8636    | 0.8601 |
| 0.1395        | 3.67  | 2300 | 0.6750          | 0.8135   | 0.8208 | 0.8466    | 0.8135 |
| 0.0485        | 3.83  | 2400 | 0.4431          | 0.8860   | 0.8856 | 0.8888    | 0.8860 |
| 0.1206        | 3.99  | 2500 | 0.5491          | 0.8394   | 0.8375 | 0.8477    | 0.8394 |
| 0.0485        | 4.15  | 2600 | 0.5289          | 0.8653   | 0.8677 | 0.8744    | 0.8653 |
| 0.0494        | 4.31  | 2700 | 0.5665          | 0.8601   | 0.8603 | 0.8633    | 0.8601 |
| 0.0062        | 4.47  | 2800 | 0.6186          | 0.8497   | 0.8479 | 0.8547    | 0.8497 |
| 0.0065        | 4.63  | 2900 | 0.5823          | 0.8756   | 0.8728 | 0.8737    | 0.8756 |
| 0.0045        | 4.79  | 3000 | 0.5801          | 0.8705   | 0.8699 | 0.8724    | 0.8705 |
| 0.038         | 4.95  | 3100 | 0.6542          | 0.8394   | 0.8405 | 0.8472    | 0.8394 |
| 0.0035        | 5.11  | 3200 | 0.6029          | 0.8653   | 0.8653 | 0.8714    | 0.8653 |
| 0.0031        | 5.27  | 3300 | 0.6385          | 0.8601   | 0.8582 | 0.8653    | 0.8601 |
| 0.0029        | 5.43  | 3400 | 0.6132          | 0.8705   | 0.8676 | 0.8830    | 0.8705 |
| 0.0039        | 5.59  | 3500 | 0.6398          | 0.8653   | 0.8639 | 0.8815    | 0.8653 |
| 0.0034        | 5.75  | 3600 | 0.6221          | 0.8653   | 0.8649 | 0.8726    | 0.8653 |
| 0.003         | 5.91  | 3700 | 0.6206          | 0.8705   | 0.8684 | 0.8850    | 0.8705 |


### Framework versions

- Transformers 4.29.2
- Pytorch 1.13.1
- Datasets 2.14.5
- Tokenizers 0.13.3