File size: 1,611 Bytes
d6987d0 03dfa90 d6987d0 0ea370b d6987d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 256.40 +/- 21.37
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
```python
import gym
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.env_util import make_vec_env
# Create a vectorized environment of 16 parallel environments
env = make_vec_env("LunarLander-v2", n_envs=16)
# Optimizaed Hyperparameters
model = PPO(
"MlpPolicy",
env=env,
n_steps=655,
batch_size=32,
n_epochs=8,
gamma=0.998,
gae_lambda=0.98,
ent_coef=0.01,
verbose=1,
)
# Train it for 500,000 timesteps
model.learn(total_timesteps=int(5e6))
# Create a new environment for evaluation
eval_env = gym.make("LunarLander-v2")
# Evaluate the model with 10 evaluation episodes and deterministic=True
mean_reward, std_reward = evaluate_policy(
model, eval_env, n_eval_episodes=10, deterministic=True
)
# Print the results
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
#>>> mean_reward=254.56 +/- 18.45056958672337
```
|