wav2vec2-large-xls-r-1b-Irish
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3599
- Wer: 0.4236
- Cer: 0.1768
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_8_0
with split test
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-1b-Irish --dataset mozilla-foundation/common_voice_8_0 --config ga-IE --split test
Inference With LM
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "kingabzpro/wav2vec2-large-xls-r-1b-Irish"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ga-IE", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
Cer |
6.3955 |
12.48 |
100 |
2.9897 |
1.0 |
1.0 |
2.3811 |
24.97 |
200 |
1.2304 |
0.7140 |
0.3106 |
1.0476 |
37.48 |
300 |
1.0661 |
0.5597 |
0.2407 |
0.7014 |
49.97 |
400 |
1.1788 |
0.4799 |
0.1947 |
0.4409 |
62.48 |
500 |
1.2649 |
0.4658 |
0.1997 |
0.4839 |
74.97 |
600 |
1.3259 |
0.4450 |
0.1868 |
0.3643 |
87.48 |
700 |
1.3506 |
0.4312 |
0.1760 |
0.3468 |
99.97 |
800 |
1.3599 |
0.4236 |
0.1768 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0