kingabzpro's picture
Librarian Bot: Add base_model information to model (#1)
56dd030 verified
metadata
language:
  - ga
license: apache-2.0
tags:
  - automatic-speech-recognition
  - robust-speech-event
  - hf-asr-leaderboard
datasets:
  - mozilla-foundation/common_voice_8_0
metrics:
  - wer
  - cer
base_model: facebook/wav2vec2-xls-r-1b
model-index:
  - name: wav2vec2-large-xls-r-1b-Irish-Abid
    results:
      - task:
          type: automatic-speech-recognition
          name: Speech Recognition
        dataset:
          name: Common Voice ga-IE
          type: mozilla-foundation/common_voice_8_0
          args: ga-IE
        metrics:
          - type: wer
            value: 38.45
            name: Test WER With LM
          - type: cer
            value: 16.52
            name: Test CER With LM

wav2vec2-large-xls-r-1b-Irish

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3599
  • Wer: 0.4236
  • Cer: 0.1768

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with split test
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-1b-Irish --dataset mozilla-foundation/common_voice_8_0 --config ga-IE --split test

Inference With LM

import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "kingabzpro/wav2vec2-large-xls-r-1b-Irish"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ga-IE", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
6.3955 12.48 100 2.9897 1.0 1.0
2.3811 24.97 200 1.2304 0.7140 0.3106
1.0476 37.48 300 1.0661 0.5597 0.2407
0.7014 49.97 400 1.1788 0.4799 0.1947
0.4409 62.48 500 1.2649 0.4658 0.1997
0.4839 74.97 600 1.3259 0.4450 0.1868
0.3643 87.48 700 1.3506 0.4312 0.1760
0.3468 99.97 800 1.3599 0.4236 0.1768

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0