metadata
language:
- pa-IN
license: apache-2.0
tags:
- automatic-speech-recognition
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
- cer
model-index:
- name: wav2vec2-punjabi-V8-Abid
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: mozilla-foundation/common_voice_8_0
name: Common Voice pa-IN
args: pa-IN
metrics:
- type: wer
value: 39.47
name: Test WER
- type: cer
value: 13.6
name: Test CER
wav2vec2-large-xlsr-53-punjabi
This model is a fine-tuned version of Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10 on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 1.2101
- Wer: 0.4939
- Cer: 0.2238
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
11.0563 | 3.7 | 100 | 1.9492 | 0.7123 | 0.3872 |
1.6715 | 7.41 | 200 | 1.3142 | 0.6433 | 0.3086 |
0.9117 | 11.11 | 300 | 1.2733 | 0.5657 | 0.2627 |
0.666 | 14.81 | 400 | 1.2730 | 0.5598 | 0.2534 |
0.4225 | 18.52 | 500 | 1.2548 | 0.5300 | 0.2399 |
0.3209 | 22.22 | 600 | 1.2166 | 0.5229 | 0.2372 |
0.2678 | 25.93 | 700 | 1.1795 | 0.5041 | 0.2276 |
0.2088 | 29.63 | 800 | 1.2101 | 0.4939 | 0.2238 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0