|
--- |
|
base_model: llm-jp/llm-jp-3-13b |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
license: apache-2.0 |
|
language: |
|
- en |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** kmagai |
|
- **License:** apache-2.0 |
|
- **Finetuned from model:** llm-jp/llm-jp-3-13b |
|
|
|
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|
|
## JSONL Output Process |
|
|
|
### Model Inference Setup |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
import torch |
|
from tqdm import tqdm |
|
import json |
|
|
|
# QLoRA config for 4-bit quantization |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=False, |
|
) |
|
|
|
# Load model and tokenizer |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
quantization_config=bnb_config, |
|
device_map="auto", |
|
token=HF_TOKEN |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token=HF_TOKEN) |
|
``` |
|
|
|
### Input Data Processing |
|
|
|
The script reads input data from a JSONL file (`elyza-tasks-100-TV_0.jsonl`). Each line contains a JSON object with task information: |
|
|
|
```python |
|
datasets = [] |
|
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
``` |
|
|
|
### Generation Process |
|
|
|
For each input in the dataset: |
|
|
|
1. Format the prompt with instruction template |
|
2. Tokenize the input |
|
3. Generate response using the model |
|
4. Decode the output |
|
5. Create result object with task_id and output |
|
|
|
```python |
|
results = [] |
|
for data in tqdm(datasets): |
|
input = data["input"] |
|
prompt = f"""### Instruction |
|
{input} |
|
### Response: |
|
""" |
|
|
|
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) |
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
tokenized_input, |
|
max_new_tokens=100, |
|
do_sample=False, |
|
repetition_penalty=1.2 |
|
)[0] |
|
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True) |
|
|
|
results.append({"task_id": data["task_id"], "input": input, "output": output}) |
|
``` |
|
|
|
### Generation Parameters |
|
|
|
- `max_new_tokens=100`: Maximum number of tokens to generate |
|
- `do_sample=False`: Deterministic generation (same output every time) |
|
- `repetition_penalty=1.2`: Penalize repetition in generated text |
|
|
|
### Output Format |
|
|
|
The generated responses are saved in a JSONL file with the following format: |
|
|
|
```json |
|
{"task_id": "task_1", "input": "input text", "output": "generated response"} |
|
``` |
|
|
|
Required fields: |
|
- `task_id`: Unique identifier for the task |
|
- `output`: Response generated by the model |
|
|
|
Optional fields: |
|
- `input`: Input text (can be omitted in submission) |
|
|
|
## Training Data Format |
|
|
|
The training data should be provided in JSONL (JSON Lines) format, where each line represents a single JSON object containing the following fields: |
|
|
|
```json |
|
{ |
|
"instruction": "Task instruction text", |
|
"input": "Input text (optional)", |
|
"output": "Expected output text" |
|
} |
|
``` |
|
|
|
### Fields Description |
|
|
|
- `instruction`: Task instruction that tells the model what to do |
|
- `input`: (Optional) Input text that provides specific context for the instruction |
|
- `output`: Expected output that represents the ideal response |
|
|
|
### Example |
|
|
|
```json |
|
{"instruction": "以下の文章を要約してください。", "input": "人工知能(AI)は、人間の知能を模倣し、学習、推論、判断などを行うコンピュータシステムです。近年、機械学習や深層学習の発展により、画像認識、自然言語処理、ゲームなど様々な分野で人間に匹敵する、あるいは人間を超える性能を示しています。", "output": "AIは人間の知能を模倣するコンピュータシステムで、機械学習の発展により多くの分野で高い性能を示している。"} |
|
{"instruction": "次の英文を日本語に翻訳してください。", "input": "Artificial Intelligence is transforming the way we live and work.", "output": "人工知能は私たちの生活と仕事の仕方を変革しています。"} |