metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: emotion_recognition
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.125
emotion_recognition
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 2.0993
- Accuracy: 0.125
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 40 | 2.0986 | 0.125 |
No log | 2.0 | 80 | 2.0816 | 0.125 |
No log | 3.0 | 120 | 2.0798 | 0.125 |
No log | 4.0 | 160 | 2.0765 | 0.125 |
No log | 5.0 | 200 | 2.0765 | 0.125 |
No log | 6.0 | 240 | 2.0820 | 0.125 |
No log | 7.0 | 280 | 2.0796 | 0.125 |
No log | 8.0 | 320 | 2.0826 | 0.125 |
No log | 9.0 | 360 | 2.0759 | 0.125 |
No log | 10.0 | 400 | 2.0799 | 0.125 |
No log | 11.0 | 440 | 2.0593 | 0.125 |
No log | 12.0 | 480 | 2.0813 | 0.125 |
2.0843 | 13.0 | 520 | 2.0817 | 0.125 |
2.0843 | 14.0 | 560 | 2.1626 | 0.125 |
2.0843 | 15.0 | 600 | 2.1105 | 0.125 |
2.0843 | 16.0 | 640 | 2.0921 | 0.125 |
2.0843 | 17.0 | 680 | 2.0878 | 0.125 |
2.0843 | 18.0 | 720 | 2.0877 | 0.125 |
2.0843 | 19.0 | 760 | 2.0815 | 0.125 |
2.0843 | 20.0 | 800 | 2.0812 | 0.125 |
2.0843 | 21.0 | 840 | 2.0810 | 0.125 |
2.0843 | 22.0 | 880 | 2.0796 | 0.125 |
2.0843 | 23.0 | 920 | 2.0798 | 0.125 |
2.0843 | 24.0 | 960 | 2.0808 | 0.125 |
2.0948 | 25.0 | 1000 | 2.0812 | 0.125 |
2.0948 | 26.0 | 1040 | 2.0806 | 0.125 |
2.0948 | 27.0 | 1080 | 2.0797 | 0.125 |
2.0948 | 28.0 | 1120 | 2.0795 | 0.125 |
2.0948 | 29.0 | 1160 | 2.0801 | 0.125 |
2.0948 | 30.0 | 1200 | 2.0792 | 0.125 |
2.0948 | 31.0 | 1240 | 2.0783 | 0.125 |
2.0948 | 32.0 | 1280 | 2.0792 | 0.125 |
2.0948 | 33.0 | 1320 | 2.0786 | 0.125 |
2.0948 | 34.0 | 1360 | 2.0769 | 0.125 |
2.0948 | 35.0 | 1400 | 2.0686 | 0.125 |
2.0948 | 36.0 | 1440 | 2.0616 | 0.125 |
2.0948 | 37.0 | 1480 | 2.0653 | 0.125 |
2.0804 | 38.0 | 1520 | 2.0970 | 0.125 |
2.0804 | 39.0 | 1560 | 2.0815 | 0.125 |
2.0804 | 40.0 | 1600 | 2.0743 | 0.125 |
2.0804 | 41.0 | 1640 | 2.0802 | 0.125 |
2.0804 | 42.0 | 1680 | 2.0655 | 0.125 |
2.0804 | 43.0 | 1720 | 2.0768 | 0.125 |
2.0804 | 44.0 | 1760 | 2.0642 | 0.125 |
2.0804 | 45.0 | 1800 | 2.0637 | 0.125 |
2.0804 | 46.0 | 1840 | 2.0687 | 0.125 |
2.0804 | 47.0 | 1880 | 2.0603 | 0.125 |
2.0804 | 48.0 | 1920 | 2.0507 | 0.125 |
2.0804 | 49.0 | 1960 | 2.0395 | 0.125 |
2.0589 | 50.0 | 2000 | 2.0600 | 0.125 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3