language: ko
tags:
- text-2-text-generation
Model Card for Bert base model for Korean
Model Details
Model Description
More information needed.
- Developed by: kiyoung kim
- Shared by [Optional]: kiyoung kim
- Model type: Text2Text Generation
- Language(s) (NLP): Korean
- License: More information needed
- Parent Model: bert-base-multilingual-uncased
- Resources for more information:
Uses
Direct Use
This model can be used for the task of text2text generation.
Downstream Use [Optional]
More information needed.
Out-of-Scope Use
The model should not be used to intentionally create hostile or alienating environments for people.
Bias, Risks, and Limitations
Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
Training Details
Training Data
- 70GB Korean text dataset and 42000 lower-cased subwords are used
The model authors also note in the GitHub Repo:
ํ์ต์ ์ฌ์ฉํ ๋ฐ์ดํฐ๋ ๋ค์๊ณผ ๊ฐ์ต๋๋ค. 1.) ๊ตญ๋ด ์ฃผ์ ์ปค๋จธ์ค ๋ฆฌ๋ทฐ 1์ต๊ฐ + ๋ธ๋ก๊ทธ ํ ์น์ฌ์ดํธ 2000๋ง๊ฐ (75GB) 2.) ๋ชจ๋์ ๋ง๋ญ์น (18GB) 3.) ์ํคํผ๋์์ ๋๋ฌด์ํค (6GB) ๋ถํ์ํ๊ฑฐ๋ ๋๋ฌด ์งค์ ๋ฌธ์ฅ, ์ค๋ณต๋๋ ๋ฌธ์ฅ๋ค์ ์ ์ธํ์ฌ 100GB์ ๋ฐ์ดํฐ ์ค ์ต์ข ์ ์ผ๋ก 70GB (์ฝ 127์ต๊ฐ์ token)์ ํ ์คํธ ๋ฐ์ดํฐ๋ฅผ ํ์ต์ ์ฌ์ฉํ์์ต๋๋ค. ๋ฐ์ดํฐ๋ ํ์ฅํ(8GB), ์ํ(6GB), ์ ์์ ํ(13GB), ๋ฐ๋ ค๋๋ฌผ(2GB) ๋ฑ๋ฑ์ ์นดํ ๊ณ ๋ฆฌ๋ก ๋ถ๋ฅ๋์ด ์์ผ๋ฉฐ ๋๋ฉ์ธ ํนํ ์ธ์ด๋ชจ๋ธ ํ์ต์ ์ฌ์ฉํ์์ต๋๋ค
Training Procedure
Preprocessing
The model authors also note in the GitHub Repo:
BERT ๋ชจ๋ธ์๋ whole-word-masking์ด ์ ์ฉ๋์์ต๋๋ค.
ํ๊ธ, ์์ด, ์ซ์์ ์ผ๋ถ ํน์๋ฌธ์๋ฅผ ์ ์ธํ ๋ฌธ์๋ ํ์ต์ ๋ฐฉํด๊ฐ๋๋ค๊ณ ํ๋จํ์ฌ ์ญ์ ํ์์ต๋๋ค(์์: ํ์, ์ด๋ชจ์ง ๋ฑ) Huggingface tokenizers ์ wordpiece๋ชจ๋ธ์ ์ฌ์ฉํด 40000๊ฐ์ subword๋ฅผ ์์ฑํ์์ต๋๋ค. ์ฌ๊ธฐ์ 2000๊ฐ์ unused token๊ณผ ๋ฃ์ด ํ์ตํ์์ผ๋ฉฐ, unused token๋ ๋๋ฉ์ธ ๋ณ ํนํ ์ฉ์ด๋ฅผ ๋ด๊ธฐ ์ํด ์ฌ์ฉ๋ฉ๋๋ค.
Speeds, Sizes, Times
More information needed
Evaluation
Testing Data, Factors & Metrics
Testing Data
More information needed
Factors
More information needed
Metrics
More information needed
Results
- Check the model performance and other language models for Korean in github
NSMC (acc) |
Naver NER (F1) |
PAWS (acc) |
KorNLI (acc) |
KorSTS (spearman) |
Question Pair (acc) |
Korean-Hate-Speech (Dev) (F1) |
|
---|---|---|---|---|---|---|---|
kcbert-base | 89.87 | 85.00 | 67.40 | 75.57 | 75.94 | 93.93 | 68.78 |
OURS | |||||||
bert-kor-base | 90.87 | 87.27 | 82.80 | 82.32 | 84.31 | 95.25 | 68.45 |
Model Examination
More information needed
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: More information needed
- Hours used: More information needed
- Cloud Provider: More information needed
- Compute Region: More information needed
- Carbon Emitted: More information needed
Technical Specifications [optional]
Model Architecture and Objective
More information needed
Compute Infrastructure
More information needed
Hardware
More information needed
Software
More information needed.
Citation
BibTeX:
@misc{kim2020lmkor,
author = {Kiyoung Kim},
title = {Pretrained Language Models For Korean},
year = {2020},
publisher = {GitHub},
howpublished = {\url{https://github.com/kiyoungkim1/LMkor}}
}
Glossary [optional]
More information needed
More Information [optional]
Cloud TPUs are provided by TensorFlow Research Cloud (TFRC) program.
Also, ๋ชจ๋์ ๋ง๋ญ์น is used for pretraining data.
Model Card Authors [optional]
Kiyoung kim in collaboration with Ezi Ozoani and the Hugging Face team
Model Card Contact
More information needed
How to Get Started with the Model
Use the code below to get started with the model.
Click to expand
# only for pytorch in transformers
from transformers import BertTokenizerFast, EncoderDecoderModel
tokenizer = BertTokenizerFast.from_pretrained("kykim/bertshared-kor-base")
model = EncoderDecoderModel.from_pretrained("kykim/bertshared-kor-base")