bertshared-kor-base / README.md
nazneen's picture
model documentation
e561545
|
raw
history blame
6 kB
metadata
language: ko
tags:
  - text-2-text-generation

Model Card for Bert base model for Korean

Model Details

Model Description

More information needed.

  • Developed by: kiyoung kim
  • Shared by [Optional]: kiyoung kim
  • Model type: Text2Text Generation
  • Language(s) (NLP): Korean
  • License: More information needed
  • Parent Model: bert-base-multilingual-uncased
  • Resources for more information:

Uses

Direct Use

This model can be used for the task of text2text generation.

Downstream Use [Optional]

More information needed.

Out-of-Scope Use

The model should not be used to intentionally create hostile or alienating environments for people.

Bias, Risks, and Limitations

Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

Training Details

Training Data

  • 70GB Korean text dataset and 42000 lower-cased subwords are used

The model authors also note in the GitHub Repo:

ํ•™์Šต์— ์‚ฌ์šฉํ•œ ๋ฐ์ดํ„ฐ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. 1.) ๊ตญ๋‚ด ์ฃผ์š” ์ปค๋จธ์Šค ๋ฆฌ๋ทฐ 1์–ต๊ฐœ + ๋ธ”๋กœ๊ทธ ํ˜• ์›น์‚ฌ์ดํŠธ 2000๋งŒ๊ฐœ (75GB) 2.) ๋ชจ๋‘์˜ ๋ง๋ญ‰์น˜ (18GB) 3.) ์œ„ํ‚คํ”ผ๋””์•„์™€ ๋‚˜๋ฌด์œ„ํ‚ค (6GB) ๋ถˆํ•„์š”ํ•˜๊ฑฐ๋‚˜ ๋„ˆ๋ฌด ์งค์€ ๋ฌธ์žฅ, ์ค‘๋ณต๋˜๋Š” ๋ฌธ์žฅ๋“ค์„ ์ œ์™ธํ•˜์—ฌ 100GB์˜ ๋ฐ์ดํ„ฐ ์ค‘ ์ตœ์ข…์ ์œผ๋กœ 70GB (์•ฝ 127์–ต๊ฐœ์˜ token)์˜ ํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šต์— ์‚ฌ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ๋Š” ํ™”์žฅํ’ˆ(8GB), ์‹ํ’ˆ(6GB), ์ „์ž์ œํ’ˆ(13GB), ๋ฐ˜๋ ค๋™๋ฌผ(2GB) ๋“ฑ๋“ฑ์˜ ์นดํ…Œ๊ณ ๋ฆฌ๋กœ ๋ถ„๋ฅ˜๋˜์–ด ์žˆ์œผ๋ฉฐ ๋„๋ฉ”์ธ ํŠนํ™” ์–ธ์–ด๋ชจ๋ธ ํ•™์Šต์— ์‚ฌ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค

Training Procedure

Preprocessing

The model authors also note in the GitHub Repo:

BERT ๋ชจ๋ธ์—๋Š” whole-word-masking์ด ์ ์šฉ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

ํ•œ๊ธ€, ์˜์–ด, ์ˆซ์ž์™€ ์ผ๋ถ€ ํŠน์ˆ˜๋ฌธ์ž๋ฅผ ์ œ์™ธํ•œ ๋ฌธ์ž๋Š” ํ•™์Šต์— ๋ฐฉํ•ด๊ฐ€๋œ๋‹ค๊ณ  ํŒ๋‹จํ•˜์—ฌ ์‚ญ์ œํ•˜์˜€์Šต๋‹ˆ๋‹ค(์˜ˆ์‹œ: ํ•œ์ž, ์ด๋ชจ์ง€ ๋“ฑ) Huggingface tokenizers ์˜ wordpiece๋ชจ๋ธ์„ ์‚ฌ์šฉํ•ด 40000๊ฐœ์˜ subword๋ฅผ ์ƒ์„ฑํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์— 2000๊ฐœ์˜ unused token๊ณผ ๋„ฃ์–ด ํ•™์Šตํ•˜์˜€์œผ๋ฉฐ, unused token๋Š” ๋„๋ฉ”์ธ ๋ณ„ ํŠนํ™” ์šฉ์–ด๋ฅผ ๋‹ด๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.

Speeds, Sizes, Times

More information needed

Evaluation

Testing Data, Factors & Metrics

Testing Data

More information needed

Factors

More information needed

Metrics

More information needed

Results

  • Check the model performance and other language models for Korean in github
NSMC
(acc)
Naver NER
(F1)
PAWS
(acc)
KorNLI
(acc)
KorSTS
(spearman)
Question Pair
(acc)
Korean-Hate-Speech (Dev)
(F1)
kcbert-base 89.87 85.00 67.40 75.57 75.94 93.93 68.78
OURS
bert-kor-base 90.87 87.27 82.80 82.32 84.31 95.25 68.45

Model Examination

More information needed

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: More information needed
  • Hours used: More information needed
  • Cloud Provider: More information needed
  • Compute Region: More information needed
  • Carbon Emitted: More information needed

Technical Specifications [optional]

Model Architecture and Objective

More information needed

Compute Infrastructure

More information needed

Hardware

More information needed

Software

More information needed.

Citation

BibTeX:

@misc{kim2020lmkor,
  author = {Kiyoung Kim},
  title = {Pretrained Language Models For Korean},
  year = {2020},
  publisher = {GitHub},
  howpublished = {\url{https://github.com/kiyoungkim1/LMkor}}
}

Glossary [optional]

More information needed

More Information [optional]

Model Card Authors [optional]

Kiyoung kim in collaboration with Ezi Ozoani and the Hugging Face team

Model Card Contact

More information needed

How to Get Started with the Model

Use the code below to get started with the model.

Click to expand
 # only for pytorch in transformers
from transformers import BertTokenizerFast, EncoderDecoderModel

tokenizer = BertTokenizerFast.from_pretrained("kykim/bertshared-kor-base")
model = EncoderDecoderModel.from_pretrained("kykim/bertshared-kor-base")