|
--- |
|
language: ko |
|
tags: |
|
- text-2-text-generation |
|
--- |
|
|
|
|
|
# Model Card for Bert base model for Korean |
|
|
|
# Model Details |
|
|
|
## Model Description |
|
|
|
More information needed. |
|
|
|
- **Developed by:** kiyoung kim |
|
- **Shared by [Optional]:** kiyoung kim |
|
- **Model type:** Text2Text Generation |
|
- **Language(s) (NLP):** Korean |
|
- **License:** More information needed |
|
- **Parent Model:** bert-base-multilingual-uncased |
|
- **Resources for more information:** |
|
- [GitHub Repo](https://github.com/kiyoungkim1/LM-kor) |
|
|
|
|
|
|
|
# Uses |
|
|
|
|
|
## Direct Use |
|
This model can be used for the task of text2text generation. |
|
|
|
## Downstream Use [Optional] |
|
|
|
More information needed. |
|
|
|
## Out-of-Scope Use |
|
|
|
The model should not be used to intentionally create hostile or alienating environments for people. |
|
|
|
# Bias, Risks, and Limitations |
|
|
|
|
|
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. |
|
|
|
|
|
|
|
## Recommendations |
|
|
|
|
|
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. |
|
|
|
# Training Details |
|
|
|
## Training Data |
|
* 70GB Korean text dataset and 42000 lower-cased subwords are used |
|
|
|
The model authors also note in the [GitHub Repo](https://github.com/kiyoungkim1/LM-kor): |
|
|
|
> ํ์ต์ ์ฌ์ฉํ ๋ฐ์ดํฐ๋ ๋ค์๊ณผ ๊ฐ์ต๋๋ค. |
|
1.) ๊ตญ๋ด ์ฃผ์ ์ปค๋จธ์ค ๋ฆฌ๋ทฐ 1์ต๊ฐ + ๋ธ๋ก๊ทธ ํ ์น์ฌ์ดํธ 2000๋ง๊ฐ (75GB) |
|
2.) ๋ชจ๋์ ๋ง๋ญ์น (18GB) |
|
3.) ์ํคํผ๋์์ ๋๋ฌด์ํค (6GB) |
|
๋ถํ์ํ๊ฑฐ๋ ๋๋ฌด ์งค์ ๋ฌธ์ฅ, ์ค๋ณต๋๋ ๋ฌธ์ฅ๋ค์ ์ ์ธํ์ฌ 100GB์ ๋ฐ์ดํฐ ์ค ์ต์ข
์ ์ผ๋ก 70GB (์ฝ 127์ต๊ฐ์ token)์ ํ
์คํธ ๋ฐ์ดํฐ๋ฅผ ํ์ต์ ์ฌ์ฉํ์์ต๋๋ค. |
|
๋ฐ์ดํฐ๋ ํ์ฅํ(8GB), ์ํ(6GB), ์ ์์ ํ(13GB), ๋ฐ๋ ค๋๋ฌผ(2GB) ๋ฑ๋ฑ์ ์นดํ
๊ณ ๋ฆฌ๋ก ๋ถ๋ฅ๋์ด ์์ผ๋ฉฐ ๋๋ฉ์ธ ํนํ ์ธ์ด๋ชจ๋ธ ํ์ต์ ์ฌ์ฉํ์์ต๋๋ค |
|
|
|
|
|
## Training Procedure |
|
|
|
|
|
### Preprocessing |
|
|
|
The model authors also note in the [GitHub Repo](https://github.com/kiyoungkim1/LM-kor): |
|
> BERT ๋ชจ๋ธ์๋ whole-word-masking์ด ์ ์ฉ๋์์ต๋๋ค. |
|
|
|
> ํ๊ธ, ์์ด, ์ซ์์ ์ผ๋ถ ํน์๋ฌธ์๋ฅผ ์ ์ธํ ๋ฌธ์๋ ํ์ต์ ๋ฐฉํด๊ฐ๋๋ค๊ณ ํ๋จํ์ฌ ์ญ์ ํ์์ต๋๋ค(์์: ํ์, ์ด๋ชจ์ง ๋ฑ) |
|
[Huggingface tokenizers](https://github.com/huggingface/tokenizers) ์ wordpiece๋ชจ๋ธ์ ์ฌ์ฉํด 40000๊ฐ์ subword๋ฅผ ์์ฑํ์์ต๋๋ค. |
|
์ฌ๊ธฐ์ 2000๊ฐ์ unused token๊ณผ ๋ฃ์ด ํ์ตํ์์ผ๋ฉฐ, unused token๋ ๋๋ฉ์ธ ๋ณ ํนํ ์ฉ์ด๋ฅผ ๋ด๊ธฐ ์ํด ์ฌ์ฉ๋ฉ๋๋ค. |
|
|
|
### Speeds, Sizes, Times |
|
More information needed |
|
|
|
|
|
# Evaluation |
|
|
|
|
|
## Testing Data, Factors & Metrics |
|
|
|
### Testing Data |
|
|
|
More information needed |
|
|
|
|
|
### Factors |
|
More information needed |
|
|
|
### Metrics |
|
|
|
More information needed |
|
|
|
|
|
## Results |
|
|
|
* Check the model performance and other language models for Korean in [github](https://github.com/kiyoungkim1/LM-kor) |
|
|
|
| | **NSMC**<br/>(acc) | **Naver NER**<br/>(F1) | **PAWS**<br/>(acc) | **KorNLI**<br/>(acc) | **KorSTS**<br/>(spearman) | **Question Pair**<br/>(acc) | **Korean-Hate-Speech (Dev)**<br/>(F1) | |
|
| :-------------------- | :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | :-----------------------------------: | |
|
| kcbert-base | 89.87 | 85.00 | 67.40 | 75.57 | 75.94 | 93.93 | **68.78** | |
|
|**OURS**| |
|
| **bert-kor-base** | 90.87 | 87.27 | 82.80 | 82.32 | 84.31 | 95.25 | 68.45 | |
|
|
|
|
|
|
|
# Model Examination |
|
|
|
More information needed |
|
|
|
# Environmental Impact |
|
|
|
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). |
|
|
|
- **Hardware Type:** More information needed |
|
- **Hours used:** More information needed |
|
- **Cloud Provider:** More information needed |
|
- **Compute Region:** More information needed |
|
- **Carbon Emitted:** More information needed |
|
|
|
# Technical Specifications [optional] |
|
|
|
## Model Architecture and Objective |
|
|
|
More information needed |
|
|
|
## Compute Infrastructure |
|
|
|
More information needed |
|
|
|
### Hardware |
|
|
|
|
|
More information needed |
|
|
|
### Software |
|
|
|
More information needed. |
|
|
|
# Citation |
|
|
|
|
|
**BibTeX:** |
|
|
|
|
|
```bibtex |
|
@misc{kim2020lmkor, |
|
author = {Kiyoung Kim}, |
|
title = {Pretrained Language Models For Korean}, |
|
year = {2020}, |
|
publisher = {GitHub}, |
|
howpublished = {\url{https://github.com/kiyoungkim1/LMkor}} |
|
} |
|
``` |
|
|
|
|
|
|
|
|
|
# Glossary [optional] |
|
More information needed |
|
|
|
# More Information [optional] |
|
* Cloud TPUs are provided by [TensorFlow Research Cloud (TFRC)](https://www.tensorflow.org/tfrc/) program. |
|
|
|
* Also, [๋ชจ๋์ ๋ง๋ญ์น](https://corpus.korean.go.kr/) is used for pretraining data. |
|
|
|
|
|
# Model Card Authors [optional] |
|
|
|
Kiyoung kim in collaboration with Ezi Ozoani and the Hugging Face team |
|
|
|
|
|
# Model Card Contact |
|
|
|
More information needed |
|
|
|
# How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
```python |
|
# only for pytorch in transformers |
|
from transformers import BertTokenizerFast, EncoderDecoderModel |
|
|
|
tokenizer = BertTokenizerFast.from_pretrained("kykim/bertshared-kor-base") |
|
model = EncoderDecoderModel.from_pretrained("kykim/bertshared-kor-base") |
|
``` |
|
</details> |
|
|
|
|
|
|
|
|