lambdaofgod's picture
Update README.md
4dc2811
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# lambdaofgod/paperswithcode_word2vec
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 200 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Training
This model was trained on PapersWithCode dataset on abstracts and READMEs using gensim.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('lambdaofgod/paperswithcode_word2vec')
embeddings = model.encode(sentences)
print(embeddings)
```
## Full Model Architecture
```
SentenceTransformer(
(0): WordEmbeddings(
(emb_layer): Embedding(147043, 200)
)
(1): Pooling({'word_embedding_dimension': 200, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->