|
--- |
|
license: apache-2.0 |
|
--- |
|
### BioinspiredMixtral: Large Language Model for the Mechanics of Biological and Bio-Inspired Materials using Mixture-of-Experts |
|
|
|
To accelerate discovery and guide insights, we report an open-source autoregressive transformer large language model (LLM), trained on expert knowledge in the biological materials field, especially focused on mechanics and structural properties. |
|
|
|
The model is finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials and can be prompted to recall information, assist with research tasks, and function as an engine for creativity. |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/K0GifLVENb8G0nERQAzeQ.png) |
|
|
|
This model is based on work reported in https://doi.org/10.1002/advs.202306724, but focused on the development of a mixture-of-experts strategy. |
|
|
|
The model is a fine-tuned version of mistralai/Mixtral-8x7B-Instruct-v0.1. |
|
|
|
``` |
|
from llama_cpp import Llama |
|
|
|
model_path='lamm-mit/BioinspiredMixtral/ggml-model-q5_K_M.gguf' |
|
chat_format="mistral-instruct" |
|
|
|
llm = Llama(model_path=model_path, |
|
n_gpu_layers=-1,verbose= True, |
|
n_ctx=10000, |
|
#main_gpu=0, |
|
chat_format=chat_format, |
|
#split_mode=llama_cpp.LLAMA_SPLIT_LAYER |
|
) |
|
``` |
|
|
|
Or, download directly from Hugging Face: |
|
|
|
``` |
|
from llama_cpp import Llama |
|
|
|
model_path='lamm-mit/BioinspiredMixtral/ggml-model-q5_K_M.gguf' |
|
chat_format="mistral-instruct" |
|
|
|
llm = Llama.from_pretrained( |
|
repo_id=model_path, |
|
filename="*q5_K_M.gguf", |
|
verbose=True, |
|
n_gpu_layers=-1, |
|
n_ctx=10000, |
|
#main_gpu=0, |
|
chat_format=chat_format, |
|
) |
|
``` |
|
For inference: |
|
``` |
|
def generate_BioMixtral (system_prompt='You are an expert in biological materials, mechanics and related topics.', prompt="What is spider silk?", |
|
temperature=0.0, |
|
max_tokens=10000, |
|
): |
|
|
|
if system_prompt==None: |
|
messages=[ |
|
{"role": "user", "content": prompt}, |
|
] |
|
else: |
|
messages=[ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": prompt}, |
|
] |
|
|
|
result=llm.create_chat_completion( |
|
messages=messages, |
|
temperature=temperature, |
|
max_tokens=max_tokens, |
|
) |
|
|
|
start_time = time.time() |
|
result=generate_BioMixtral(system_prompt='You respond accurately.', |
|
prompt="What is graphene? Answer with detail.", |
|
max_tokens=512, temperature=0.7, ) |
|
|
|
print (result) |
|
deltat=time.time() - start_time |
|
print("--- %s seconds ---" % deltat) |
|
toked=tokenizer(res) |
|
print ("Tokens per second (generation): ", len (toked['input_ids'])/deltat) |
|
``` |