Qwen2-finetuned / README.md
leo009's picture
Upload folder using huggingface_hub
df586a8 verified
|
raw
history blame
3.51 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: Qwen/Qwen2-7B
model-index:
  - name: outputs/out
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: Qwen/Qwen2-7B
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
  - path: tatsu-lab/alpaca
    type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/out
sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: false
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
special_tokens:

outputs/out

This model is a fine-tuned version of Qwen/Qwen2-7B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 4.3265

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
10.7953 0.0031 1 10.8104
5.4963 0.2513 80 5.4101
5.0323 0.5026 160 5.0758
4.9877 0.7538 240 4.8417
4.7408 1.0051 320 4.6180
4.5097 1.2442 400 4.5066
4.3959 1.4955 480 4.4513
4.2488 1.7468 560 4.4107
4.3507 1.9980 640 4.3784
4.2352 2.2352 720 4.3684
4.2141 2.4865 800 4.3505
4.2739 2.7377 880 4.3375
4.4037 2.9890 960 4.3310
4.195 3.2269 1040 4.3287
4.1996 3.4782 1120 4.3268
4.1353 3.7295 1200 4.3265

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.1.2+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1