metadata
library_name: transformers
license: other
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: distilabel-reasoning-R1-Llama-70B-ja-train
results: []
distilabel-reasoning-R1-Llama-70B-ja-train
This model is a fine-tuned version of deepseek-ai/DeepSeek-R1-Distill-Qwen-7B on the distilabel-reasoning-R1-Llama-70B-ja-train dataset. It achieves the following results on the evaluation set:
- Loss: 0.4519
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
### model
model_name_or_path: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
### method
stage: sft
do_train: true
finetuning_type: full
deepspeed: /root/LLaMA-Factory/examples/deepspeed/ds_z2_config.json
### dataset
dataset: distilabel-reasoning-R1-Llama-70B-ja-train
template: qwen
cutoff_len: 4500
overwrite_cache: true
preprocessing_num_workers: 16
packing: true
### output
output_dir: /root/train_outputs/DeepSeek-R1-Distill-Qwen-7B/distilabel-reasoning-R1-Llama-70B-ja-train
logging_steps: 1
save_steps: 0.99999
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 1
learning_rate: 1.0e-5
num_train_epochs: 1.0
lr_scheduler_type: cosine
warmup_ratio: 0.01
bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.01
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 0.1
echo '{
"distilabel-reasoning-R1-Llama-70B-ja-train": {
"hf_hub_url": "lightblue/distilabel-reasoning-R1-Llama-70B-ja-train",
"formatting": "sharegpt"
}
}' > /root/LLaMA-Factory/data/dataset_info.json
cd /root/LLaMA-Factory && llamafactory-cli train /root/reasoning_train.yaml
rm -r /root/train_outputs/DeepSeek-R1-Distill-Qwen-7B/distilabel-reasoning-R1-Llama-70B-ja-train/checkpoint*
huggingface-cli upload lightblue/DeepSeek-R1-Distill-Qwen-7B-Japanese /root/train_outputs/DeepSeek-R1-Distill-Qwen-7B/distilabel-reasoning-R1-Llama-70B-ja-train
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.766 | 0.1087 | 5 | 0.5912 |
0.5873 | 0.2174 | 10 | 0.5282 |
0.3868 | 0.3261 | 15 | 0.4958 |
0.5101 | 0.4348 | 20 | 0.4761 |
0.4085 | 0.5435 | 25 | 0.4644 |
0.5561 | 0.6522 | 30 | 0.4578 |
0.4683 | 0.7609 | 35 | 0.4542 |
0.5055 | 0.8696 | 40 | 0.4526 |
0.5359 | 0.9783 | 45 | 0.4519 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3