lilyyellow's picture
End of training
8eaaf8f verified
|
raw
history blame
9.44 kB
metadata
base_model: lilyyellow/my_awesome_ner-token_classification_v1.0.7-5
tags:
  - generated_from_trainer
model-index:
  - name: my_awesome_ner-token_classification_v1.0.7-5
    results: []

my_awesome_ner-token_classification_v1.0.7-5

This model is a fine-tuned version of lilyyellow/my_awesome_ner-token_classification_v1.0.7-5 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5208
  • Age: {'precision': 0.8493150684931506, 'recall': 0.9393939393939394, 'f1': 0.8920863309352518, 'number': 132}
  • Datetime: {'precision': 0.7049180327868853, 'recall': 0.7428861788617886, 'f1': 0.723404255319149, 'number': 984}
  • Disease: {'precision': 0.6953405017921147, 'recall': 0.6855123674911661, 'f1': 0.6903914590747331, 'number': 283}
  • Event: {'precision': 0.30033003300330036, 'recall': 0.3446969696969697, 'f1': 0.3209876543209877, 'number': 264}
  • Gender: {'precision': 0.7647058823529411, 'recall': 0.7982456140350878, 'f1': 0.7811158798283262, 'number': 114}
  • Law: {'precision': 0.5303514376996805, 'recall': 0.6561264822134387, 'f1': 0.5865724381625441, 'number': 253}
  • Location: {'precision': 0.7111228255139694, 'recall': 0.7375615090213231, 'f1': 0.7241009125067096, 'number': 1829}
  • Organization: {'precision': 0.6420640104506858, 'recall': 0.6991465149359887, 'f1': 0.6693905345590739, 'number': 1406}
  • Person: {'precision': 0.6987087517934003, 'recall': 0.7295880149812735, 'f1': 0.7138145840967388, 'number': 1335}
  • Phone: {'precision': 0.8522727272727273, 'recall': 0.9615384615384616, 'f1': 0.9036144578313254, 'number': 78}
  • Product: {'precision': 0.4, 'recall': 0.3828125, 'f1': 0.3912175648702595, 'number': 256}
  • Quantity: {'precision': 0.5313001605136437, 'recall': 0.6084558823529411, 'f1': 0.567266495287061, 'number': 544}
  • Role: {'precision': 0.4302721088435374, 'recall': 0.48747591522157996, 'f1': 0.45709123757904246, 'number': 519}
  • Transportation: {'precision': 0.5, 'recall': 0.6231884057971014, 'f1': 0.5548387096774193, 'number': 138}
  • Overall Precision: 0.6349
  • Overall Recall: 0.6817
  • Overall F1: 0.6575
  • Overall Accuracy: 0.8878

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Age Datetime Disease Event Gender Law Location Organization Person Phone Product Quantity Role Transportation Overall Precision Overall Recall Overall F1 Overall Accuracy
0.1172 1.9991 2313 0.4711 {'precision': 0.8620689655172413, 'recall': 0.946969696969697, 'f1': 0.9025270758122743, 'number': 132} {'precision': 0.6928909952606636, 'recall': 0.7428861788617886, 'f1': 0.7170181461500736, 'number': 984} {'precision': 0.7089552238805971, 'recall': 0.6713780918727915, 'f1': 0.689655172413793, 'number': 283} {'precision': 0.3090909090909091, 'recall': 0.32196969696969696, 'f1': 0.3153988868274582, 'number': 264} {'precision': 0.7520661157024794, 'recall': 0.7982456140350878, 'f1': 0.7744680851063831, 'number': 114} {'precision': 0.5795053003533569, 'recall': 0.6482213438735178, 'f1': 0.6119402985074627, 'number': 253} {'precision': 0.7174721189591078, 'recall': 0.7386550027337343, 'f1': 0.7279094827586208, 'number': 1829} {'precision': 0.6510554089709762, 'recall': 0.7019914651493598, 'f1': 0.675564681724846, 'number': 1406} {'precision': 0.720666161998486, 'recall': 0.7131086142322097, 'f1': 0.716867469879518, 'number': 1335} {'precision': 0.7816091954022989, 'recall': 0.8717948717948718, 'f1': 0.8242424242424243, 'number': 78} {'precision': 0.38288288288288286, 'recall': 0.33203125, 'f1': 0.35564853556485354, 'number': 256} {'precision': 0.5684575389948007, 'recall': 0.6029411764705882, 'f1': 0.5851917930419268, 'number': 544} {'precision': 0.4645390070921986, 'recall': 0.5048169556840078, 'f1': 0.4838411819021238, 'number': 519} {'precision': 0.47368421052631576, 'recall': 0.5869565217391305, 'f1': 0.5242718446601942, 'number': 138} 0.6480 0.6761 0.6617 0.8890
0.0813 3.9983 4626 0.5208 {'precision': 0.8493150684931506, 'recall': 0.9393939393939394, 'f1': 0.8920863309352518, 'number': 132} {'precision': 0.7049180327868853, 'recall': 0.7428861788617886, 'f1': 0.723404255319149, 'number': 984} {'precision': 0.6953405017921147, 'recall': 0.6855123674911661, 'f1': 0.6903914590747331, 'number': 283} {'precision': 0.30033003300330036, 'recall': 0.3446969696969697, 'f1': 0.3209876543209877, 'number': 264} {'precision': 0.7647058823529411, 'recall': 0.7982456140350878, 'f1': 0.7811158798283262, 'number': 114} {'precision': 0.5303514376996805, 'recall': 0.6561264822134387, 'f1': 0.5865724381625441, 'number': 253} {'precision': 0.7111228255139694, 'recall': 0.7375615090213231, 'f1': 0.7241009125067096, 'number': 1829} {'precision': 0.6420640104506858, 'recall': 0.6991465149359887, 'f1': 0.6693905345590739, 'number': 1406} {'precision': 0.6987087517934003, 'recall': 0.7295880149812735, 'f1': 0.7138145840967388, 'number': 1335} {'precision': 0.8522727272727273, 'recall': 0.9615384615384616, 'f1': 0.9036144578313254, 'number': 78} {'precision': 0.4, 'recall': 0.3828125, 'f1': 0.3912175648702595, 'number': 256} {'precision': 0.5313001605136437, 'recall': 0.6084558823529411, 'f1': 0.567266495287061, 'number': 544} {'precision': 0.4302721088435374, 'recall': 0.48747591522157996, 'f1': 0.45709123757904246, 'number': 519} {'precision': 0.5, 'recall': 0.6231884057971014, 'f1': 0.5548387096774193, 'number': 138} 0.6349 0.6817 0.6575 0.8878

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1