liuyanchen1015's picture
update model card README.md
497e812
|
raw
history blame
3.6 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: Finetuned_FLAN-T5_VALUE_adapterfusion_lr5e-4_bs32
    results: []

Finetuned_FLAN-T5_VALUE_adapterfusion_lr5e-4_bs32

This model is a fine-tuned version of liuyanchen1015/FLAN-T5_GLUE_finetuning_lr3e-4 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0870
  • Accuracy: 0.8692

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0862 0.08 2500 0.1059 0.8526
0.092 0.17 5000 0.1025 0.856
0.0943 0.25 7500 0.1126 0.8516
0.0899 0.34 10000 0.0955 0.8578
0.0896 0.42 12500 0.1046 0.8564
0.0952 0.51 15000 0.0978 0.851
0.0901 0.59 17500 0.0958 0.8498
0.095 0.68 20000 0.0974 0.8532
0.0955 0.76 22500 0.0982 0.853
0.0912 0.85 25000 0.0980 0.853
0.0913 0.93 27500 0.0944 0.8528
0.0889 1.02 30000 0.0907 0.8592
0.0871 1.1 32500 0.0933 0.855
0.0872 1.18 35000 0.0904 0.861
0.0859 1.27 37500 0.0879 0.8594
0.0847 1.35 40000 0.0950 0.8584
0.0827 1.44 42500 0.0909 0.8622
0.0836 1.52 45000 0.0933 0.8552
0.0805 1.61 47500 0.0928 0.8646
0.0799 1.69 50000 0.0905 0.8648
0.0789 1.78 52500 0.0863 0.87
0.0786 1.86 55000 0.0907 0.8612
0.0772 1.95 57500 0.0883 0.8672
0.075 2.03 60000 0.0886 0.8664
0.0727 2.12 62500 0.0878 0.8688
0.0724 2.2 65000 0.0881 0.8708
0.0729 2.28 67500 0.0879 0.8664
0.0714 2.37 70000 0.0883 0.8694
0.0694 2.45 72500 0.0876 0.8724
0.0698 2.54 75000 0.0869 0.8698
0.0706 2.62 77500 0.0872 0.8712
0.0685 2.71 80000 0.0874 0.8692
0.068 2.79 82500 0.0873 0.869
0.0685 2.88 85000 0.0863 0.8688
0.068 2.96 87500 0.0870 0.8692

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.10.1
  • Tokenizers 0.12.1