chansung's picture
End of training
5f9adf6 verified
metadata
base_model: meta-llama/Meta-Llama-3-8B
datasets:
  - llama-duo/synth_summarize_dataset_dedup
library_name: peft
license: llama3
tags:
  - alignment-handbook
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: llama3-8b-summarize-gpt4o-128k
    results: []

llama3-8b-summarize-gpt4o-128k

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the llama-duo/synth_summarize_dataset_dedup dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2606

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
0.8176 0.9954 109 2.1150
0.7464 2.0 219 2.1313
0.7128 2.9954 328 2.1444
0.6924 4.0 438 2.1631
0.6777 4.9954 547 2.1823
0.6526 6.0 657 2.2078
0.6326 6.9954 766 2.2296
0.6311 8.0 876 2.2485
0.6233 8.9954 985 2.2587
0.6194 9.9543 1090 2.2606

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.2.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1