|
--- |
|
base_model: meta-llama/Meta-Llama-3-8B |
|
datasets: |
|
- llama-duo/synth_summarize_dataset_dedup |
|
library_name: peft |
|
license: llama3 |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: llama3-8b-summarize-gpt4o-128k |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llama3-8b-summarize-gpt4o-128k |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the llama-duo/synth_summarize_dataset_dedup dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.2606 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.8176 | 0.9954 | 109 | 2.1150 | |
|
| 0.7464 | 2.0 | 219 | 2.1313 | |
|
| 0.7128 | 2.9954 | 328 | 2.1444 | |
|
| 0.6924 | 4.0 | 438 | 2.1631 | |
|
| 0.6777 | 4.9954 | 547 | 2.1823 | |
|
| 0.6526 | 6.0 | 657 | 2.2078 | |
|
| 0.6326 | 6.9954 | 766 | 2.2296 | |
|
| 0.6311 | 8.0 | 876 | 2.2485 | |
|
| 0.6233 | 8.9954 | 985 | 2.2587 | |
|
| 0.6194 | 9.9543 | 1090 | 2.2606 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.44.0 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |