doberst's picture
Update README.md
292bb7e
|
raw
history blame
5.92 kB
---
license: apache-2.0
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
industry-bert-insurance-v0.1 is part of a series of industry-fine-tuned sentence_transformer embedding models.
BERT-based 768-parameter drop-in substitute for non-industry-specific embeddings model. This model was trained on a wide range of
publicly available materials related to the Insurance industry.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** llmware
- **Shared by [optional]:** Darren Oberst
- **Model type:** BERT-based Industry domain fine-tuned Sentence Transformer architecture
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Finetuned from model [optional]:** BERT-based model, fine-tuning methodology described below.
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
This model is intended to be used as a sentence embedding model, specifically for the Asset Management and financial industries.
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
This model was fine-tuned using a custom self-supervised procedure that combined contrastive techniques with stochastic injections of
distortions in the samples. The methodology was derived, adapted and inspired primarily from three research papers cited below:
TSDAE (Reimers), DeClutr (Giorgi), and Contrastive Tension (Carlsson).
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
Custom training protocol used to train the model, which was derived and inspired by the following papers:
@article{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
journal= "arXiv preprint arXiv:2104.06979",
month = "4",
year = "2021",
url = "https://arxiv.org/abs/2104.06979",
}
@inproceedings{giorgi-etal-2021-declutr,
title = {{D}e{CLUTR}: Deep Contrastive Learning for Unsupervised Textual Representations},
author = {Giorgi, John and Nitski, Osvald and Wang, Bo and Bader, Gary},
year = 2021,
month = aug,
booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)},
publisher = {Association for Computational Linguistics},
address = {Online},
pages = {879--895},
doi = {10.18653/v1/2021.acl-long.72},
url = {https://aclanthology.org/2021.acl-long.72}
}
@article{Carlsson-2021-CT,
title = {Semantic Re-tuning with Contrastive Tension},
author= {Fredrik Carlsson, Amaru Cuba Gyllensten, Evangelia Gogoulou, Erik Ylipää Hellqvist, Magnus Sahlgren},
year= {2021},
month= {"January"}
Published: 12 Jan 2021, Last Modified: 05 May 2023
}
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]