mt5-small-squad-qg / README.md
asahi417's picture
model update
06a3cd5
|
raw
history blame
12.7 kB
metadata
license: cc-by-4.0
metrics:
  - bleu4
  - meteor
  - rouge-l
  - bertscore
  - moverscore
language: en
datasets:
  - lmqg/qg_squad
pipeline_tag: text2text-generation
tags:
  - question generation
widget:
  - text: >-
      <hl> Beyonce <hl> further expanded her acting career, starring as blues
      singer Etta James in the 2008 musical biopic, Cadillac Records.
    example_title: Question Generation Example 1
  - text: >-
      Beyonce further expanded her acting career, starring as blues singer <hl>
      Etta James <hl> in the 2008 musical biopic, Cadillac Records.
    example_title: Question Generation Example 2
  - text: >-
      Beyonce further expanded her acting career, starring as blues singer Etta
      James in the 2008 musical biopic,  <hl> Cadillac Records <hl> .
    example_title: Question Generation Example 3
model-index:
  - name: lmqg/mt5-small-squad-qg
    results:
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_squad
          type: default
          args: default
        metrics:
          - name: BLEU4 (Question Generation)
            type: bleu4_question_generation
            value: 21.65
          - name: ROUGE-L (Question Generation)
            type: rouge_l_question_generation
            value: 48.95
          - name: METEOR (Question Generation)
            type: meteor_question_generation
            value: 23.83
          - name: BERTScore (Question Generation)
            type: bertscore_question_generation
            value: 90.01
          - name: MoverScore (Question Generation)
            type: moverscore_question_generation
            value: 62.75
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_dequad
          type: default
          args: default
        metrics:
          - name: BLEU4 (Question Generation)
            type: bleu4_question_generation
            value: 9.242783121165897e-12
          - name: ROUGE-L (Question Generation)
            type: rouge_l_question_generation
            value: 0.01556150764938016
          - name: METEOR (Question Generation)
            type: meteor_question_generation
            value: 0.04809700451843158
          - name: BERTScore (Question Generation)
            type: bertscore_question_generation
            value: 0.7353078946893743
          - name: MoverScore (Question Generation)
            type: moverscore_question_generation
            value: 0.5036973829954939
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_esquad
          type: default
          args: default
        metrics:
          - name: BLEU4 (Question Generation)
            type: bleu4_question_generation
            value: 0.0059191752064594125
          - name: ROUGE-L (Question Generation)
            type: rouge_l_question_generation
            value: 0.05208940592236566
          - name: METEOR (Question Generation)
            type: meteor_question_generation
            value: 0.06021086135293597
          - name: BERTScore (Question Generation)
            type: bertscore_question_generation
            value: 0.7494422899749911
          - name: MoverScore (Question Generation)
            type: moverscore_question_generation
            value: 0.5062373132800192
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_frquad
          type: default
          args: default
        metrics:
          - name: BLEU4 (Question Generation)
            type: bleu4_question_generation
            value: 0.0171464639522496
          - name: ROUGE-L (Question Generation)
            type: rouge_l_question_generation
            value: 0.1583673053928925
          - name: METEOR (Question Generation)
            type: meteor_question_generation
            value: 0.08244973027319356
          - name: BERTScore (Question Generation)
            type: bertscore_question_generation
            value: 0.7291012183458674
          - name: MoverScore (Question Generation)
            type: moverscore_question_generation
            value: 0.509610854598101
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_itquad
          type: default
          args: default
        metrics:
          - name: BLEU4 (Question Generation)
            type: bleu4_question_generation
            value: 0.005438910607183992
          - name: ROUGE-L (Question Generation)
            type: rouge_l_question_generation
            value: 0.05010570221421983
          - name: METEOR (Question Generation)
            type: meteor_question_generation
            value: 0.05890828426558759
          - name: BERTScore (Question Generation)
            type: bertscore_question_generation
            value: 0.7260160158030385
          - name: MoverScore (Question Generation)
            type: moverscore_question_generation
            value: 0.5023119088393686
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_jaquad
          type: default
          args: default
        metrics:
          - name: BLEU4 (Question Generation)
            type: bleu4_question_generation
            value: 4.4114578660129224e-8
          - name: ROUGE-L (Question Generation)
            type: rouge_l_question_generation
            value: 0.06084267343290677
          - name: METEOR (Question Generation)
            type: meteor_question_generation
            value: 0.005149267426183168
          - name: BERTScore (Question Generation)
            type: bertscore_question_generation
            value: 0.6608093198082075
          - name: MoverScore (Question Generation)
            type: moverscore_question_generation
            value: 0.46526108687696893
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_koquad
          type: default
          args: default
        metrics:
          - name: BLEU4 (Question Generation)
            type: bleu4_question_generation
            value: 1.4750917137316939e-12
          - name: ROUGE-L (Question Generation)
            type: rouge_l_question_generation
            value: 0.0006466767450454226
          - name: METEOR (Question Generation)
            type: meteor_question_generation
            value: 0.007310046912436679
          - name: BERTScore (Question Generation)
            type: bertscore_question_generation
            value: 0.6634288882769679
          - name: MoverScore (Question Generation)
            type: moverscore_question_generation
            value: 0.4586124640357038
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_ruquad
          type: default
          args: default
        metrics:
          - name: BLEU4 (Question Generation)
            type: bleu4_question_generation
            value: 4.229109829516021e-12
          - name: ROUGE-L (Question Generation)
            type: rouge_l_question_generation
            value: 0.009881091250723615
          - name: METEOR (Question Generation)
            type: meteor_question_generation
            value: 0.017796529053904556
          - name: BERTScore (Question Generation)
            type: bertscore_question_generation
            value: 0.7089446693028568
          - name: MoverScore (Question Generation)
            type: moverscore_question_generation
            value: 0.49098728551715626

Model Card of lmqg/mt5-small-squad-qg

This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_squad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="en", model="lmqg/mt5-small-squad-qg")

# model prediction
questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-small-squad-qg")
output = pipe("<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")

Evaluation

Score Type Dataset
BERTScore 90.01 default lmqg/qg_squad
Bleu_1 54.07 default lmqg/qg_squad
Bleu_2 37.62 default lmqg/qg_squad
Bleu_3 28.18 default lmqg/qg_squad
Bleu_4 21.65 default lmqg/qg_squad
METEOR 23.83 default lmqg/qg_squad
MoverScore 62.75 default lmqg/qg_squad
ROUGE_L 48.95 default lmqg/qg_squad
  • Metrics (Question Generation, Out-of-Domain)
Dataset Type BERTScore Bleu_4 METEOR MoverScore ROUGE_L Link
lmqg/qg_dequad default 73.53 0.0 4.81 50.37 1.56 link
lmqg/qg_esquad default 74.94 0.59 6.02 50.62 5.21 link
lmqg/qg_frquad default 72.91 1.71 8.24 50.96 15.84 link
lmqg/qg_itquad default 72.6 0.54 5.89 50.23 5.01 link
lmqg/qg_jaquad default 66.08 0.0 0.51 46.53 6.08 link
lmqg/qg_koquad default 66.34 0.0 0.73 45.86 0.06 link
lmqg/qg_ruquad default 70.89 0.0 1.78 49.1 0.99 link

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_squad
  • dataset_name: default
  • input_types: ['paragraph_answer']
  • output_types: ['question']
  • prefix_types: None
  • model: google/mt5-small
  • max_length: 512
  • max_length_output: 32
  • epoch: 15
  • batch: 64
  • lr: 0.0005
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 1
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}