|
|
|
--- |
|
language: |
|
- eng |
|
license: cc0-1.0 |
|
tags: |
|
- multilabel-image-classification |
|
- multilabel |
|
- generated_from_trainer |
|
base_model: drone-DinoVdeau-produttoria-probabilities-large-2024_11_06-batch-size16_freeze_probs |
|
model-index: |
|
- name: drone-DinoVdeau-produttoria-probabilities-large-2024_11_06-batch-size16_freeze_probs |
|
results: [] |
|
--- |
|
|
|
drone-DinoVdeau-produttoria-probabilities is a fine-tuned version of [drone-DinoVdeau-produttoria-probabilities-large-2024_11_06-batch-size16_freeze_probs](https://huggingface.co/drone-DinoVdeau-produttoria-probabilities-large-2024_11_06-batch-size16_freeze_probs). It achieves the following results on the test set: |
|
|
|
|
|
- Loss: 0.3261 |
|
- F1 Micro: 0.8621 |
|
- F1 Macro: 0.8264 |
|
- Accuracy: 0.1682 |
|
- RMSE: 0.2445 |
|
- MAE: 0.1621 |
|
- R2: 0.4057 |
|
|
|
| Class | F1 per class | |
|
|----------|-------| |
|
| Acropore_branched | 0.8063 | |
|
| Acropore_digitised | 0.7335 | |
|
| Acropore_tabular | 0.6247 | |
|
| Algae | 0.9859 | |
|
| Dead_coral | 0.8424 | |
|
| Fish | 0.7464 | |
|
| Millepore | 0.6453 | |
|
| No_acropore_encrusting | 0.7292 | |
|
| No_acropore_massive | 0.8681 | |
|
| No_acropore_sub_massive | 0.8092 | |
|
| Rock | 0.9925 | |
|
| Rubble | 0.9693 | |
|
| Sand | 0.9904 | |
|
|
|
|
|
--- |
|
|
|
# Model description |
|
drone-DinoVdeau-produttoria-probabilities is a model built on top of drone-DinoVdeau-produttoria-probabilities-large-2024_11_06-batch-size16_freeze_probs model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers. |
|
|
|
The source code for training the model can be found in this [Git repository](https://github.com/SeatizenDOI/DinoVdeau). |
|
|
|
- **Developed by:** [lombardata](https://huggingface.co/lombardata), credits to [César Leblanc](https://huggingface.co/CesarLeblanc) and [Victor Illien](https://huggingface.co/groderg) |
|
|
|
--- |
|
|
|
# Intended uses & limitations |
|
You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species. |
|
|
|
--- |
|
|
|
# Training and evaluation data |
|
Details on the estimated number of images for each class are given in the following table: |
|
| Class | train | test | val | Total | |
|
|:------------------------|--------:|-------:|------:|--------:| |
|
| Acropore_branched | 2028 | 684 | 686 | 3398 | |
|
| Acropore_digitised | 2006 | 735 | 717 | 3458 | |
|
| Acropore_tabular | 1237 | 461 | 451 | 2149 | |
|
| Algae | 11086 | 3671 | 3675 | 18432 | |
|
| Dead_coral | 6354 | 2161 | 2147 | 10662 | |
|
| Fish | 4032 | 1430 | 1430 | 6892 | |
|
| Millepore | 1943 | 783 | 772 | 3498 | |
|
| No_acropore_encrusting | 2663 | 986 | 957 | 4606 | |
|
| No_acropore_massive | 6897 | 2375 | 2375 | 11647 | |
|
| No_acropore_sub_massive | 5416 | 1988 | 1958 | 9362 | |
|
| Rock | 11164 | 3726 | 3725 | 18615 | |
|
| Rubble | 10687 | 3570 | 3572 | 17829 | |
|
| Sand | 11151 | 3726 | 3723 | 18600 | |
|
|
|
--- |
|
|
|
# Training procedure |
|
|
|
## Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
|
|
- **Number of Epochs**: 45.0 |
|
- **Learning Rate**: 0.001 |
|
- **Train Batch Size**: 16 |
|
- **Eval Batch Size**: 16 |
|
- **Optimizer**: Adam |
|
- **LR Scheduler Type**: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1 |
|
- **Freeze Encoder**: Yes |
|
- **Data Augmentation**: Yes |
|
|
|
|
|
## Data Augmentation |
|
Data were augmented using the following transformations : |
|
|
|
Train Transforms |
|
- **PreProcess**: No additional parameters |
|
- **Resize**: probability=1.00 |
|
- **RandomHorizontalFlip**: probability=0.25 |
|
- **RandomVerticalFlip**: probability=0.25 |
|
- **ColorJiggle**: probability=0.25 |
|
- **RandomPerspective**: probability=0.25 |
|
- **Normalize**: probability=1.00 |
|
|
|
Val Transforms |
|
- **PreProcess**: No additional parameters |
|
- **Resize**: probability=1.00 |
|
- **Normalize**: probability=1.00 |
|
|
|
|
|
|
|
## Training results |
|
Epoch | Validation Loss | MAE | RMSE | R2 | Learning Rate |
|
--- | --- | --- | --- | --- | --- |
|
0 | N/A | 0.0000 | 0.0000 | 0.0000 | 0.001 |
|
1 | 0.36246591806411743 | 0.1880 | 0.2669 | 0.2744 | 0.001 |
|
2 | 0.3457428216934204 | 0.1685 | 0.2560 | 0.3367 | 0.001 |
|
3 | 0.3518487811088562 | 0.1747 | 0.2597 | 0.3157 | 0.001 |
|
4 | 0.3507988750934601 | 0.1751 | 0.2563 | 0.3345 | 0.001 |
|
5 | 0.3436409533023834 | 0.1696 | 0.2546 | 0.3371 | 0.001 |
|
6 | 0.35096481442451477 | 0.1767 | 0.2598 | 0.3175 | 0.001 |
|
7 | 0.3412320613861084 | 0.1750 | 0.2538 | 0.3471 | 0.001 |
|
8 | 0.3456409275531769 | 0.1678 | 0.2561 | 0.3435 | 0.001 |
|
9 | 0.3425351679325104 | 0.1741 | 0.2545 | 0.3409 | 0.001 |
|
10 | 0.33964109420776367 | 0.1711 | 0.2525 | 0.3583 | 0.001 |
|
11 | 0.34479108452796936 | 0.1721 | 0.2542 | 0.3498 | 0.001 |
|
12 | 0.3415849804878235 | 0.1767 | 0.2527 | 0.3577 | 0.001 |
|
13 | 0.33990854024887085 | 0.1677 | 0.2527 | 0.3523 | 0.001 |
|
14 | 0.34520208835601807 | 0.1746 | 0.2540 | 0.3443 | 0.001 |
|
15 | 0.34849879145622253 | 0.1801 | 0.2568 | 0.3333 | 0.001 |
|
16 | 0.34347954392433167 | 0.1718 | 0.2537 | 0.3473 | 0.001 |
|
17 | 0.341246634721756 | 0.1711 | 0.2508 | 0.3633 | 0.0001 |
|
18 | 0.3398562967777252 | 0.1708 | 0.2507 | 0.3649 | 0.0001 |
|
19 | 0.3332718312740326 | 0.1675 | 0.2483 | 0.3775 | 0.0001 |
|
20 | 0.333162784576416 | 0.1688 | 0.2478 | 0.3810 | 0.0001 |
|
21 | 0.3324449062347412 | 0.1673 | 0.2476 | 0.3810 | 0.0001 |
|
22 | 0.3320053517818451 | 0.1671 | 0.2472 | 0.3836 | 0.0001 |
|
23 | 0.3301050662994385 | 0.1658 | 0.2461 | 0.3890 | 0.0001 |
|
24 | 0.3298528492450714 | 0.1648 | 0.2458 | 0.3899 | 0.0001 |
|
25 | 0.32962867617607117 | 0.1641 | 0.2458 | 0.3903 | 0.0001 |
|
26 | 0.32889437675476074 | 0.1632 | 0.2454 | 0.3926 | 0.0001 |
|
27 | 0.33042922616004944 | 0.1674 | 0.2461 | 0.3891 | 0.0001 |
|
28 | 0.32880541682243347 | 0.1645 | 0.2451 | 0.3955 | 0.0001 |
|
29 | 0.3293789327144623 | 0.1656 | 0.2451 | 0.3961 | 0.0001 |
|
30 | 0.33135533332824707 | 0.1684 | 0.2464 | 0.3914 | 0.0001 |
|
31 | 0.32911789417266846 | 0.1608 | 0.2457 | 0.3904 | 0.0001 |
|
32 | 0.3289436399936676 | 0.1631 | 0.2453 | 0.3959 | 0.0001 |
|
33 | 0.3271527588367462 | 0.1628 | 0.2444 | 0.3972 | 0.0001 |
|
34 | 0.32699429988861084 | 0.1621 | 0.2443 | 0.3976 | 0.0001 |
|
35 | 0.32638314366340637 | 0.1615 | 0.2439 | 0.3987 | 0.0001 |
|
36 | 0.3293066918849945 | 0.1656 | 0.2455 | 0.3946 | 0.0001 |
|
37 | 0.3271186649799347 | 0.1597 | 0.2442 | 0.3996 | 0.0001 |
|
38 | 0.32695677876472473 | 0.1613 | 0.2437 | 0.4022 | 0.0001 |
|
39 | 0.33263665437698364 | 0.1575 | 0.2438 | 0.4007 | 0.0001 |
|
40 | 0.33278176188468933 | 0.1651 | 0.2442 | 0.4003 | 0.0001 |
|
41 | 0.33069443702697754 | 0.1627 | 0.2435 | 0.4031 | 0.0001 |
|
42 | 0.3310275375843048 | 0.1641 | 0.2436 | 0.4030 | 1e-05 |
|
43 | 0.32956016063690186 | 0.1603 | 0.2429 | 0.4052 | 1e-05 |
|
44 | 0.33022987842559814 | 0.1625 | 0.2432 | 0.4038 | 1e-05 |
|
45 | 0.3266430199146271 | 0.1617 | 0.2430 | 0.4047 | 1e-05 |
|
|
|
|
|
--- |
|
|
|
# Framework Versions |
|
|
|
- **Transformers**: 4.41.0 |
|
- **Pytorch**: 2.5.0+cu124 |
|
- **Datasets**: 3.0.2 |
|
- **Tokenizers**: 0.19.1 |
|
|
|
|