ke-t5-scratch / README.md
madatnlp's picture
End of training
c41db17
---
tags:
- generated_from_keras_callback
model-index:
- name: madatnlp/ke-t5-scratch
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# madatnlp/ke-t5-scratch
This model is a fine-tuned version of [madatnlp/ke-t5-math-py](https://huggingface.co/madatnlp/ke-t5-math-py) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.4760
- Validation Loss: 0.7360
- Epoch: 36
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 4.2751 | 2.1074 | 0 |
| 2.2716 | 1.7945 | 1 |
| 1.8889 | 1.5726 | 2 |
| 1.6760 | 1.3722 | 3 |
| 1.5021 | 1.3280 | 4 |
| 1.4369 | 1.2523 | 5 |
| 1.3352 | 1.0619 | 6 |
| 1.2749 | 1.1156 | 7 |
| 1.2170 | 1.0452 | 8 |
| 1.1713 | 1.0596 | 9 |
| 1.1410 | 1.0080 | 10 |
| 1.0884 | 1.0213 | 11 |
| 1.0508 | 0.9223 | 12 |
| 0.9933 | 0.9353 | 13 |
| 0.9871 | 0.8749 | 14 |
| 0.9251 | 0.9173 | 15 |
| 0.9282 | 0.8620 | 16 |
| 0.8849 | 0.8093 | 17 |
| 0.8613 | 0.7823 | 18 |
| 0.8322 | 0.8016 | 19 |
| 0.8070 | 0.8844 | 20 |
| 0.7737 | 0.7635 | 21 |
| 0.7465 | 0.8440 | 22 |
| 0.7178 | 0.7958 | 23 |
| 0.7036 | 0.7739 | 24 |
| 0.6813 | 0.7347 | 25 |
| 0.6597 | 0.7545 | 26 |
| 0.6427 | 0.7394 | 27 |
| 0.6154 | 0.7212 | 28 |
| 0.5892 | 0.7653 | 29 |
| 0.5696 | 0.7073 | 30 |
| 0.5644 | 0.6977 | 31 |
| 0.5307 | 0.6977 | 32 |
| 0.5159 | 0.7736 | 33 |
| 0.5131 | 0.8138 | 34 |
| 0.4812 | 0.7623 | 35 |
| 0.4760 | 0.7360 | 36 |
### Framework versions
- Transformers 4.18.0
- TensorFlow 2.8.0
- Datasets 2.1.0
- Tokenizers 0.12.1