metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8327974276527331
- name: Precision
type: precision
value: 0.860997154156041
- name: Recall
type: recall
value: 0.8327974276527331
- name: F1
type: f1
value: 0.8137864007121186
swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3277
- Accuracy: 0.8328
- Precision: 0.8610
- Recall: 0.8328
- F1: 0.8138
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.5603 | 1.0 | 22 | 0.5610 | 0.6817 | 0.7833 | 0.6817 | 0.5559 |
0.3934 | 2.0 | 44 | 0.3976 | 0.7910 | 0.7879 | 0.7910 | 0.7768 |
0.2992 | 3.0 | 66 | 0.3036 | 0.8071 | 0.8044 | 0.8071 | 0.7965 |
0.2746 | 4.0 | 88 | 0.3538 | 0.7878 | 0.7812 | 0.7878 | 0.7799 |
0.2573 | 5.0 | 110 | 0.2242 | 0.8521 | 0.8561 | 0.8521 | 0.8535 |
0.2724 | 6.0 | 132 | 0.3801 | 0.7749 | 0.8145 | 0.7749 | 0.7347 |
0.2344 | 7.0 | 154 | 0.3327 | 0.8232 | 0.8544 | 0.8232 | 0.8011 |
0.2225 | 8.0 | 176 | 0.3736 | 0.8392 | 0.8655 | 0.8392 | 0.8221 |
0.225 | 9.0 | 198 | 0.3479 | 0.8328 | 0.8610 | 0.8328 | 0.8138 |
0.2308 | 10.0 | 220 | 0.3277 | 0.8328 | 0.8610 | 0.8328 | 0.8138 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1