matthieulel's picture
End of training
963c482 verified
metadata
license: apache-2.0
base_model: facebook/convnextv2-nano-1k-224
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: convnextv2-nano-1k-224-finetuned-galaxy10-decals
    results: []

convnextv2-nano-1k-224-finetuned-galaxy10-decals

This model is a fine-tuned version of facebook/convnextv2-nano-1k-224 on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7023
  • Accuracy: 0.8591
  • Precision: 0.8565
  • Recall: 0.8591
  • F1: 0.8566

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.0509 0.99 62 0.9876 0.6561 0.6692 0.6561 0.6355
0.8315 2.0 125 0.6745 0.7638 0.7726 0.7638 0.7581
0.7659 2.99 187 0.6651 0.7897 0.8092 0.7897 0.7858
0.6645 4.0 250 0.6068 0.8027 0.8117 0.8027 0.8031
0.6212 4.99 312 0.5895 0.8061 0.8158 0.8061 0.8058
0.624 6.0 375 0.5128 0.8269 0.8223 0.8269 0.8220
0.5648 6.99 437 0.5219 0.8196 0.8239 0.8196 0.8171
0.5235 8.0 500 0.5652 0.8275 0.8303 0.8275 0.8270
0.5316 8.99 562 0.4804 0.8427 0.8431 0.8427 0.8396
0.4756 10.0 625 0.5345 0.8213 0.8188 0.8213 0.8169
0.4758 10.99 687 0.5560 0.8326 0.8324 0.8326 0.8302
0.4499 12.0 750 0.5283 0.8416 0.8458 0.8416 0.8423
0.4274 12.99 812 0.5347 0.8348 0.8364 0.8348 0.8337
0.4148 14.0 875 0.5326 0.8422 0.8396 0.8422 0.8383
0.3822 14.99 937 0.5116 0.8410 0.8442 0.8410 0.8412
0.3613 16.0 1000 0.6081 0.8230 0.8245 0.8230 0.8210
0.2903 16.99 1062 0.6212 0.8298 0.8289 0.8298 0.8275
0.3405 18.0 1125 0.6093 0.8377 0.8394 0.8377 0.8368
0.2999 18.99 1187 0.6482 0.8393 0.8352 0.8393 0.8356
0.2792 20.0 1250 0.6473 0.8484 0.8482 0.8484 0.8419
0.2681 20.99 1312 0.6710 0.8467 0.8428 0.8467 0.8425
0.2966 22.0 1375 0.6355 0.8534 0.8513 0.8534 0.8514
0.2609 22.99 1437 0.6850 0.8399 0.8406 0.8399 0.8397
0.2281 24.0 1500 0.7124 0.8444 0.8444 0.8444 0.8440
0.2354 24.99 1562 0.7317 0.8427 0.8394 0.8427 0.8395
0.2188 26.0 1625 0.6753 0.8512 0.8490 0.8512 0.8489
0.2118 26.99 1687 0.6865 0.8506 0.8495 0.8506 0.8494
0.2232 28.0 1750 0.7098 0.8557 0.8531 0.8557 0.8535
0.2104 28.99 1812 0.7023 0.8591 0.8565 0.8591 0.8566
0.1936 29.76 1860 0.7043 0.8557 0.8540 0.8557 0.8541

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1