matthieulel's picture
Model save
4950973 verified
|
raw
history blame
4.43 kB
metadata
license: apache-2.0
base_model: facebook/dinov2-base-imagenet1k-1-layer
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: dinov2-base-imagenet1k-1-layer-finetuned-galaxy10-decals
    results: []

dinov2-base-imagenet1k-1-layer-finetuned-galaxy10-decals

This model is a fine-tuned version of facebook/dinov2-base-imagenet1k-1-layer on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5676
  • Accuracy: 0.8608
  • Precision: 0.8583
  • Recall: 0.8608
  • F1: 0.8589

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.8157 0.99 62 0.6740 0.7813 0.8046 0.7813 0.7853
0.8091 2.0 125 0.5948 0.8021 0.8016 0.8021 0.7950
0.6983 2.99 187 0.6016 0.7965 0.8077 0.7965 0.7909
0.6701 4.0 250 0.5676 0.7982 0.8016 0.7982 0.7954
0.5998 4.99 312 0.5116 0.8286 0.8401 0.8286 0.8302
0.5521 6.0 375 0.5155 0.8354 0.8375 0.8354 0.8325
0.5441 6.99 437 0.5574 0.8033 0.8104 0.8033 0.7980
0.5142 8.0 500 0.4818 0.8410 0.8418 0.8410 0.8376
0.5136 8.99 562 0.4914 0.8337 0.8353 0.8337 0.8317
0.4533 10.0 625 0.4740 0.8320 0.8335 0.8320 0.8295
0.4904 10.99 687 0.5075 0.8399 0.8409 0.8399 0.8375
0.4361 12.0 750 0.4552 0.8563 0.8554 0.8563 0.8540
0.414 12.99 812 0.5025 0.8365 0.8455 0.8365 0.8374
0.4114 14.0 875 0.4822 0.8467 0.8437 0.8467 0.8420
0.3878 14.99 937 0.4615 0.8574 0.8552 0.8574 0.8549
0.3756 16.0 1000 0.5017 0.8444 0.8523 0.8444 0.8449
0.3056 16.99 1062 0.4910 0.8517 0.8495 0.8517 0.8501
0.3255 18.0 1125 0.5206 0.8523 0.8505 0.8523 0.8491
0.3224 18.99 1187 0.5066 0.8450 0.8470 0.8450 0.8438
0.2763 20.0 1250 0.5043 0.8574 0.8519 0.8574 0.8534
0.2926 20.99 1312 0.5345 0.8546 0.8542 0.8546 0.8512
0.2824 22.0 1375 0.5320 0.8529 0.8523 0.8529 0.8517
0.2613 22.99 1437 0.5254 0.8563 0.8543 0.8563 0.8542
0.2292 24.0 1500 0.5553 0.8546 0.8529 0.8546 0.8528
0.2313 24.99 1562 0.5603 0.8602 0.8612 0.8602 0.8593
0.2143 26.0 1625 0.5267 0.8670 0.8645 0.8670 0.8650
0.2075 26.99 1687 0.5737 0.8574 0.8589 0.8574 0.8573
0.2121 28.0 1750 0.5748 0.8619 0.8601 0.8619 0.8604
0.1944 28.99 1812 0.5666 0.8647 0.8618 0.8647 0.8624
0.1866 29.76 1860 0.5676 0.8608 0.8583 0.8608 0.8589

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1