mattritchey's picture
Upload README.md with huggingface_hub
65f8a48 verified
|
raw
history blame
6.47 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - edu
  - continual pretraining
  - llama-cpp
  - gguf-my-repo
base_model: BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
datasets:
  - HuggingFaceFW/fineweb-edu
metrics:
  - accuracy
inference:
  parameters:
    max_new_tokens: 64
    do_sample: true
    temperature: 0.8
    repetition_penalty: 1.05
    no_repeat_ngram_size: 4
    eta_cutoff: 0.0006
    renormalize_logits: true
widget:
  - text: My name is El Microondas the Wise, and
    example_title: El Microondas
  - text: Kennesaw State University is a public
    example_title: Kennesaw State University
  - text: >-
      Bungie Studios is an American video game developer. They are most famous
      for developing the award winning Halo series of video games. They also
      made Destiny. The studio was founded
    example_title: Bungie
  - text: The Mona Lisa is a world-renowned painting created by
    example_title: Mona Lisa
  - text: >-
      The Harry Potter series, written by J.K. Rowling, begins with the book
      titled
    example_title: Harry Potter Series
  - text: >-
      Question: I have cities, but no houses. I have mountains, but no trees. I
      have water, but no fish. What am I?

      Answer:
    example_title: Riddle
  - text: The process of photosynthesis involves the conversion of
    example_title: Photosynthesis
  - text: >-
      Jane went to the store to buy some groceries. She picked up apples,
      oranges, and a loaf of bread. When she got home, she realized she forgot
    example_title: Story Continuation
  - text: >-
      Problem 2: If a train leaves Station A at 9:00 AM and travels at 60 mph,
      and another train leaves Station B at 10:00 AM and travels at 80 mph, when
      will they meet if the distance between the stations is 300 miles?

      To determine
    example_title: Math Problem
  - text: In the context of computer programming, an algorithm is
    example_title: Algorithm Definition
pipeline_tag: text-generation
model-index:
  - name: smol_llama-220M-GQA-fineweb_edu
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 19.88
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 2.31
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 0
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 1.23
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 14.26
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 1.41
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
          name: Open LLM Leaderboard

mattritchey/smol_llama-220M-GQA-fineweb_edu-Q4_K_M-GGUF

This model was converted to GGUF format from BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo mattritchey/smol_llama-220M-GQA-fineweb_edu-Q4_K_M-GGUF --hf-file smol_llama-220m-gqa-fineweb_edu-q4_k_m.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo mattritchey/smol_llama-220M-GQA-fineweb_edu-Q4_K_M-GGUF --hf-file smol_llama-220m-gqa-fineweb_edu-q4_k_m.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo mattritchey/smol_llama-220M-GQA-fineweb_edu-Q4_K_M-GGUF --hf-file smol_llama-220m-gqa-fineweb_edu-q4_k_m.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo mattritchey/smol_llama-220M-GQA-fineweb_edu-Q4_K_M-GGUF --hf-file smol_llama-220m-gqa-fineweb_edu-q4_k_m.gguf -c 2048