Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/sympy
/integrals
/tests
/test_transforms.py
from sympy.integrals.transforms import ( | |
mellin_transform, inverse_mellin_transform, | |
fourier_transform, inverse_fourier_transform, | |
sine_transform, inverse_sine_transform, | |
cosine_transform, inverse_cosine_transform, | |
hankel_transform, inverse_hankel_transform, | |
FourierTransform, SineTransform, CosineTransform, InverseFourierTransform, | |
InverseSineTransform, InverseCosineTransform, IntegralTransformError) | |
from sympy.integrals.laplace import ( | |
laplace_transform, inverse_laplace_transform) | |
from sympy.core.function import Function, expand_mul | |
from sympy.core import EulerGamma | |
from sympy.core.numbers import I, Rational, oo, pi | |
from sympy.core.singleton import S | |
from sympy.core.symbol import Symbol, symbols | |
from sympy.functions.combinatorial.factorials import factorial | |
from sympy.functions.elementary.complexes import re, unpolarify | |
from sympy.functions.elementary.exponential import exp, exp_polar, log | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.trigonometric import atan, cos, sin, tan | |
from sympy.functions.special.bessel import besseli, besselj, besselk, bessely | |
from sympy.functions.special.delta_functions import Heaviside | |
from sympy.functions.special.error_functions import erf, expint | |
from sympy.functions.special.gamma_functions import gamma | |
from sympy.functions.special.hyper import meijerg | |
from sympy.simplify.gammasimp import gammasimp | |
from sympy.simplify.hyperexpand import hyperexpand | |
from sympy.simplify.trigsimp import trigsimp | |
from sympy.testing.pytest import XFAIL, slow, skip, raises | |
from sympy.abc import x, s, a, b, c, d | |
nu, beta, rho = symbols('nu beta rho') | |
def test_undefined_function(): | |
from sympy.integrals.transforms import MellinTransform | |
f = Function('f') | |
assert mellin_transform(f(x), x, s) == MellinTransform(f(x), x, s) | |
assert mellin_transform(f(x) + exp(-x), x, s) == \ | |
(MellinTransform(f(x), x, s) + gamma(s + 1)/s, (0, oo), True) | |
def test_free_symbols(): | |
f = Function('f') | |
assert mellin_transform(f(x), x, s).free_symbols == {s} | |
assert mellin_transform(f(x)*a, x, s).free_symbols == {s, a} | |
def test_as_integral(): | |
from sympy.integrals.integrals import Integral | |
f = Function('f') | |
assert mellin_transform(f(x), x, s).rewrite('Integral') == \ | |
Integral(x**(s - 1)*f(x), (x, 0, oo)) | |
assert fourier_transform(f(x), x, s).rewrite('Integral') == \ | |
Integral(f(x)*exp(-2*I*pi*s*x), (x, -oo, oo)) | |
assert laplace_transform(f(x), x, s, noconds=True).rewrite('Integral') == \ | |
Integral(f(x)*exp(-s*x), (x, 0, oo)) | |
assert str(2*pi*I*inverse_mellin_transform(f(s), s, x, (a, b)).rewrite('Integral')) \ | |
== "Integral(f(s)/x**s, (s, _c - oo*I, _c + oo*I))" | |
assert str(2*pi*I*inverse_laplace_transform(f(s), s, x).rewrite('Integral')) == \ | |
"Integral(f(s)*exp(s*x), (s, _c - oo*I, _c + oo*I))" | |
assert inverse_fourier_transform(f(s), s, x).rewrite('Integral') == \ | |
Integral(f(s)*exp(2*I*pi*s*x), (s, -oo, oo)) | |
# NOTE this is stuck in risch because meijerint cannot handle it | |
def test_mellin_transform_fail(): | |
skip("Risch takes forever.") | |
MT = mellin_transform | |
bpos = symbols('b', positive=True) | |
# bneg = symbols('b', negative=True) | |
expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2) | |
# TODO does not work with bneg, argument wrong. Needs changes to matching. | |
assert MT(expr.subs(b, -bpos), x, s) == \ | |
((-1)**(a + 1)*2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(a + s) | |
*gamma(1 - a - 2*s)/gamma(1 - s), | |
(-re(a), -re(a)/2 + S.Half), True) | |
expr = (sqrt(x + b**2) + b)**a | |
assert MT(expr.subs(b, -bpos), x, s) == \ | |
( | |
2**(a + 2*s)*a*bpos**(a + 2*s)*gamma(-a - 2* | |
s)*gamma(a + s)/gamma(-s + 1), | |
(-re(a), -re(a)/2), True) | |
# Test exponent 1: | |
assert MT(expr.subs({b: -bpos, a: 1}), x, s) == \ | |
(-bpos**(2*s + 1)*gamma(s)*gamma(-s - S.Half)/(2*sqrt(pi)), | |
(-1, Rational(-1, 2)), True) | |
def test_mellin_transform(): | |
from sympy.functions.elementary.miscellaneous import (Max, Min) | |
MT = mellin_transform | |
bpos = symbols('b', positive=True) | |
# 8.4.2 | |
assert MT(x**nu*Heaviside(x - 1), x, s) == \ | |
(-1/(nu + s), (-oo, -re(nu)), True) | |
assert MT(x**nu*Heaviside(1 - x), x, s) == \ | |
(1/(nu + s), (-re(nu), oo), True) | |
assert MT((1 - x)**(beta - 1)*Heaviside(1 - x), x, s) == \ | |
(gamma(beta)*gamma(s)/gamma(beta + s), (0, oo), re(beta) > 0) | |
assert MT((x - 1)**(beta - 1)*Heaviside(x - 1), x, s) == \ | |
(gamma(beta)*gamma(1 - beta - s)/gamma(1 - s), | |
(-oo, 1 - re(beta)), re(beta) > 0) | |
assert MT((1 + x)**(-rho), x, s) == \ | |
(gamma(s)*gamma(rho - s)/gamma(rho), (0, re(rho)), True) | |
assert MT(abs(1 - x)**(-rho), x, s) == ( | |
2*sin(pi*rho/2)*gamma(1 - rho)* | |
cos(pi*(s - rho/2))*gamma(s)*gamma(rho-s)/pi, | |
(0, re(rho)), re(rho) < 1) | |
mt = MT((1 - x)**(beta - 1)*Heaviside(1 - x) | |
+ a*(x - 1)**(beta - 1)*Heaviside(x - 1), x, s) | |
assert mt[1], mt[2] == ((0, -re(beta) + 1), re(beta) > 0) | |
assert MT((x**a - b**a)/(x - b), x, s)[0] == \ | |
pi*b**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))) | |
assert MT((x**a - bpos**a)/(x - bpos), x, s) == \ | |
(pi*bpos**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))), | |
(Max(0, -re(a)), Min(1, 1 - re(a))), True) | |
expr = (sqrt(x + b**2) + b)**a | |
assert MT(expr.subs(b, bpos), x, s) == \ | |
(-a*(2*bpos)**(a + 2*s)*gamma(s)*gamma(-a - 2*s)/gamma(-a - s + 1), | |
(0, -re(a)/2), True) | |
expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2) | |
assert MT(expr.subs(b, bpos), x, s) == \ | |
(2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(s) | |
*gamma(1 - a - 2*s)/gamma(1 - a - s), | |
(0, -re(a)/2 + S.Half), True) | |
# 8.4.2 | |
assert MT(exp(-x), x, s) == (gamma(s), (0, oo), True) | |
assert MT(exp(-1/x), x, s) == (gamma(-s), (-oo, 0), True) | |
# 8.4.5 | |
assert MT(log(x)**4*Heaviside(1 - x), x, s) == (24/s**5, (0, oo), True) | |
assert MT(log(x)**3*Heaviside(x - 1), x, s) == (6/s**4, (-oo, 0), True) | |
assert MT(log(x + 1), x, s) == (pi/(s*sin(pi*s)), (-1, 0), True) | |
assert MT(log(1/x + 1), x, s) == (pi/(s*sin(pi*s)), (0, 1), True) | |
assert MT(log(abs(1 - x)), x, s) == (pi/(s*tan(pi*s)), (-1, 0), True) | |
assert MT(log(abs(1 - 1/x)), x, s) == (pi/(s*tan(pi*s)), (0, 1), True) | |
# 8.4.14 | |
assert MT(erf(sqrt(x)), x, s) == \ | |
(-gamma(s + S.Half)/(sqrt(pi)*s), (Rational(-1, 2), 0), True) | |
def test_mellin_transform2(): | |
MT = mellin_transform | |
# TODO we cannot currently do these (needs summation of 3F2(-1)) | |
# this also implies that they cannot be written as a single g-function | |
# (although this is possible) | |
mt = MT(log(x)/(x + 1), x, s) | |
assert mt[1:] == ((0, 1), True) | |
assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) | |
mt = MT(log(x)**2/(x + 1), x, s) | |
assert mt[1:] == ((0, 1), True) | |
assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) | |
mt = MT(log(x)/(x + 1)**2, x, s) | |
assert mt[1:] == ((0, 2), True) | |
assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) | |
def test_mellin_transform_bessel(): | |
from sympy.functions.elementary.miscellaneous import Max | |
MT = mellin_transform | |
# 8.4.19 | |
assert MT(besselj(a, 2*sqrt(x)), x, s) == \ | |
(gamma(a/2 + s)/gamma(a/2 - s + 1), (-re(a)/2, Rational(3, 4)), True) | |
assert MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s) == \ | |
(2**a*gamma(-2*s + S.Half)*gamma(a/2 + s + S.Half)/( | |
gamma(-a/2 - s + 1)*gamma(a - 2*s + 1)), ( | |
-re(a)/2 - S.Half, Rational(1, 4)), True) | |
assert MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s) == \ | |
(2**a*gamma(a/2 + s)*gamma(-2*s + S.Half)/( | |
gamma(-a/2 - s + S.Half)*gamma(a - 2*s + 1)), ( | |
-re(a)/2, Rational(1, 4)), True) | |
assert MT(besselj(a, sqrt(x))**2, x, s) == \ | |
(gamma(a + s)*gamma(S.Half - s) | |
/ (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)), | |
(-re(a), S.Half), True) | |
assert MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s) == \ | |
(gamma(s)*gamma(S.Half - s) | |
/ (sqrt(pi)*gamma(1 - a - s)*gamma(1 + a - s)), | |
(0, S.Half), True) | |
# NOTE: prudnikov gives the strip below as (1/2 - re(a), 1). As far as | |
# I can see this is wrong (since besselj(z) ~ 1/sqrt(z) for z large) | |
assert MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s) == \ | |
(gamma(1 - s)*gamma(a + s - S.Half) | |
/ (sqrt(pi)*gamma(Rational(3, 2) - s)*gamma(a - s + S.Half)), | |
(S.Half - re(a), S.Half), True) | |
assert MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s) == \ | |
(4**s*gamma(1 - 2*s)*gamma((a + b)/2 + s) | |
/ (gamma(1 - s + (b - a)/2)*gamma(1 - s + (a - b)/2) | |
*gamma( 1 - s + (a + b)/2)), | |
(-(re(a) + re(b))/2, S.Half), True) | |
assert MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)[1:] == \ | |
((Max(re(a), -re(a)), S.Half), True) | |
# Section 8.4.20 | |
assert MT(bessely(a, 2*sqrt(x)), x, s) == \ | |
(-cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)/pi, | |
(Max(-re(a)/2, re(a)/2), Rational(3, 4)), True) | |
assert MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s) == \ | |
(-4**s*sin(pi*(a/2 - s))*gamma(S.Half - 2*s) | |
* gamma((1 - a)/2 + s)*gamma((1 + a)/2 + s) | |
/ (sqrt(pi)*gamma(1 - s - a/2)*gamma(1 - s + a/2)), | |
(Max(-(re(a) + 1)/2, (re(a) - 1)/2), Rational(1, 4)), True) | |
assert MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s) == \ | |
(-4**s*cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)*gamma(S.Half - 2*s) | |
/ (sqrt(pi)*gamma(S.Half - s - a/2)*gamma(S.Half - s + a/2)), | |
(Max(-re(a)/2, re(a)/2), Rational(1, 4)), True) | |
assert MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s) == \ | |
(-cos(pi*s)*gamma(s)*gamma(a + s)*gamma(S.Half - s) | |
/ (pi**S('3/2')*gamma(1 + a - s)), | |
(Max(-re(a), 0), S.Half), True) | |
assert MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s) == \ | |
(-4**s*cos(pi*(a/2 - b/2 + s))*gamma(1 - 2*s) | |
* gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) | |
/ (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)), | |
(Max((-re(a) + re(b))/2, (-re(a) - re(b))/2), S.Half), True) | |
# NOTE bessely(a, sqrt(x))**2 and bessely(a, sqrt(x))*bessely(b, sqrt(x)) | |
# are a mess (no matter what way you look at it ...) | |
assert MT(bessely(a, sqrt(x))**2, x, s)[1:] == \ | |
((Max(-re(a), 0, re(a)), S.Half), True) | |
# Section 8.4.22 | |
# TODO we can't do any of these (delicate cancellation) | |
# Section 8.4.23 | |
assert MT(besselk(a, 2*sqrt(x)), x, s) == \ | |
(gamma( | |
s - a/2)*gamma(s + a/2)/2, (Max(-re(a)/2, re(a)/2), oo), True) | |
assert MT(besselj(a, 2*sqrt(2*sqrt(x)))*besselk( | |
a, 2*sqrt(2*sqrt(x))), x, s) == (4**(-s)*gamma(2*s)* | |
gamma(a/2 + s)/(2*gamma(a/2 - s + 1)), (Max(0, -re(a)/2), oo), True) | |
# TODO bessely(a, x)*besselk(a, x) is a mess | |
assert MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s) == \ | |
(gamma(s)*gamma( | |
a + s)*gamma(-s + S.Half)/(2*sqrt(pi)*gamma(a - s + 1)), | |
(Max(-re(a), 0), S.Half), True) | |
assert MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s) == \ | |
(2**(2*s - 1)*gamma(-2*s + 1)*gamma(-a/2 + b/2 + s)* \ | |
gamma(a/2 + b/2 + s)/(gamma(-a/2 + b/2 - s + 1)* \ | |
gamma(a/2 + b/2 - s + 1)), (Max(-re(a)/2 - re(b)/2, \ | |
re(a)/2 - re(b)/2), S.Half), True) | |
# TODO products of besselk are a mess | |
mt = MT(exp(-x/2)*besselk(a, x/2), x, s) | |
mt0 = gammasimp(trigsimp(gammasimp(mt[0].expand(func=True)))) | |
assert mt0 == 2*pi**Rational(3, 2)*cos(pi*s)*gamma(S.Half - s)/( | |
(cos(2*pi*a) - cos(2*pi*s))*gamma(-a - s + 1)*gamma(a - s + 1)) | |
assert mt[1:] == ((Max(-re(a), re(a)), oo), True) | |
# TODO exp(x/2)*besselk(a, x/2) [etc] cannot currently be done | |
# TODO various strange products of special orders | |
def test_expint(): | |
from sympy.functions.elementary.miscellaneous import Max | |
from sympy.functions.special.error_functions import Ci, E1, Si | |
from sympy.simplify.simplify import simplify | |
aneg = Symbol('a', negative=True) | |
u = Symbol('u', polar=True) | |
assert mellin_transform(E1(x), x, s) == (gamma(s)/s, (0, oo), True) | |
assert inverse_mellin_transform(gamma(s)/s, s, x, | |
(0, oo)).rewrite(expint).expand() == E1(x) | |
assert mellin_transform(expint(a, x), x, s) == \ | |
(gamma(s)/(a + s - 1), (Max(1 - re(a), 0), oo), True) | |
# XXX IMT has hickups with complicated strips ... | |
assert simplify(unpolarify( | |
inverse_mellin_transform(gamma(s)/(aneg + s - 1), s, x, | |
(1 - aneg, oo)).rewrite(expint).expand(func=True))) == \ | |
expint(aneg, x) | |
assert mellin_transform(Si(x), x, s) == \ | |
(-2**s*sqrt(pi)*gamma(s/2 + S.Half)/( | |
2*s*gamma(-s/2 + 1)), (-1, 0), True) | |
assert inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2) | |
/(2*s*gamma(-s/2 + 1)), s, x, (-1, 0)) \ | |
== Si(x) | |
assert mellin_transform(Ci(sqrt(x)), x, s) == \ | |
(-2**(2*s - 1)*sqrt(pi)*gamma(s)/(s*gamma(-s + S.Half)), (0, 1), True) | |
assert inverse_mellin_transform( | |
-4**s*sqrt(pi)*gamma(s)/(2*s*gamma(-s + S.Half)), | |
s, u, (0, 1)).expand() == Ci(sqrt(u)) | |
def test_inverse_mellin_transform(): | |
from sympy.core.function import expand | |
from sympy.functions.elementary.miscellaneous import (Max, Min) | |
from sympy.functions.elementary.trigonometric import cot | |
from sympy.simplify.powsimp import powsimp | |
from sympy.simplify.simplify import simplify | |
IMT = inverse_mellin_transform | |
assert IMT(gamma(s), s, x, (0, oo)) == exp(-x) | |
assert IMT(gamma(-s), s, x, (-oo, 0)) == exp(-1/x) | |
assert simplify(IMT(s/(2*s**2 - 2), s, x, (2, oo))) == \ | |
(x**2 + 1)*Heaviside(1 - x)/(4*x) | |
# test passing "None" | |
assert IMT(1/(s**2 - 1), s, x, (-1, None)) == \ | |
-x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x) | |
assert IMT(1/(s**2 - 1), s, x, (None, 1)) == \ | |
-x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x) | |
# test expansion of sums | |
assert IMT(gamma(s) + gamma(s - 1), s, x, (1, oo)) == (x + 1)*exp(-x)/x | |
# test factorisation of polys | |
r = symbols('r', real=True) | |
assert IMT(1/(s**2 + 1), s, exp(-x), (None, oo) | |
).subs(x, r).rewrite(sin).simplify() \ | |
== sin(r)*Heaviside(1 - exp(-r)) | |
# test multiplicative substitution | |
_a, _b = symbols('a b', positive=True) | |
assert IMT(_b**(-s/_a)*factorial(s/_a)/s, s, x, (0, oo)) == exp(-_b*x**_a) | |
assert IMT(factorial(_a/_b + s/_b)/(_a + s), s, x, (-_a, oo)) == x**_a*exp(-x**_b) | |
def simp_pows(expr): | |
return simplify(powsimp(expand_mul(expr, deep=False), force=True)).replace(exp_polar, exp) | |
# Now test the inverses of all direct transforms tested above | |
# Section 8.4.2 | |
nu = symbols('nu', real=True) | |
assert IMT(-1/(nu + s), s, x, (-oo, None)) == x**nu*Heaviside(x - 1) | |
assert IMT(1/(nu + s), s, x, (None, oo)) == x**nu*Heaviside(1 - x) | |
assert simp_pows(IMT(gamma(beta)*gamma(s)/gamma(s + beta), s, x, (0, oo))) \ | |
== (1 - x)**(beta - 1)*Heaviside(1 - x) | |
assert simp_pows(IMT(gamma(beta)*gamma(1 - beta - s)/gamma(1 - s), | |
s, x, (-oo, None))) \ | |
== (x - 1)**(beta - 1)*Heaviside(x - 1) | |
assert simp_pows(IMT(gamma(s)*gamma(rho - s)/gamma(rho), s, x, (0, None))) \ | |
== (1/(x + 1))**rho | |
assert simp_pows(IMT(d**c*d**(s - 1)*sin(pi*c) | |
*gamma(s)*gamma(s + c)*gamma(1 - s)*gamma(1 - s - c)/pi, | |
s, x, (Max(-re(c), 0), Min(1 - re(c), 1)))) \ | |
== (x**c - d**c)/(x - d) | |
assert simplify(IMT(1/sqrt(pi)*(-c/2)*gamma(s)*gamma((1 - c)/2 - s) | |
*gamma(-c/2 - s)/gamma(1 - c - s), | |
s, x, (0, -re(c)/2))) == \ | |
(1 + sqrt(x + 1))**c | |
assert simplify(IMT(2**(a + 2*s)*b**(a + 2*s - 1)*gamma(s)*gamma(1 - a - 2*s) | |
/gamma(1 - a - s), s, x, (0, (-re(a) + 1)/2))) == \ | |
b**(a - 1)*(b**2*(sqrt(1 + x/b**2) + 1)**a + x*(sqrt(1 + x/b**2) + 1 | |
)**(a - 1))/(b**2 + x) | |
assert simplify(IMT(-2**(c + 2*s)*c*b**(c + 2*s)*gamma(s)*gamma(-c - 2*s) | |
/ gamma(-c - s + 1), s, x, (0, -re(c)/2))) == \ | |
b**c*(sqrt(1 + x/b**2) + 1)**c | |
# Section 8.4.5 | |
assert IMT(24/s**5, s, x, (0, oo)) == log(x)**4*Heaviside(1 - x) | |
assert expand(IMT(6/s**4, s, x, (-oo, 0)), force=True) == \ | |
log(x)**3*Heaviside(x - 1) | |
assert IMT(pi/(s*sin(pi*s)), s, x, (-1, 0)) == log(x + 1) | |
assert IMT(pi/(s*sin(pi*s/2)), s, x, (-2, 0)) == log(x**2 + 1) | |
assert IMT(pi/(s*sin(2*pi*s)), s, x, (Rational(-1, 2), 0)) == log(sqrt(x) + 1) | |
assert IMT(pi/(s*sin(pi*s)), s, x, (0, 1)) == log(1 + 1/x) | |
# TODO | |
def mysimp(expr): | |
from sympy.core.function import expand | |
from sympy.simplify.powsimp import powsimp | |
from sympy.simplify.simplify import logcombine | |
return expand( | |
powsimp(logcombine(expr, force=True), force=True, deep=True), | |
force=True).replace(exp_polar, exp) | |
assert mysimp(mysimp(IMT(pi/(s*tan(pi*s)), s, x, (-1, 0)))) in [ | |
log(1 - x)*Heaviside(1 - x) + log(x - 1)*Heaviside(x - 1), | |
log(x)*Heaviside(x - 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x + | |
1)*Heaviside(-x + 1)] | |
# test passing cot | |
assert mysimp(IMT(pi*cot(pi*s)/s, s, x, (0, 1))) in [ | |
log(1/x - 1)*Heaviside(1 - x) + log(1 - 1/x)*Heaviside(x - 1), | |
-log(x)*Heaviside(-x + 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x + | |
1)*Heaviside(-x + 1), ] | |
# 8.4.14 | |
assert IMT(-gamma(s + S.Half)/(sqrt(pi)*s), s, x, (Rational(-1, 2), 0)) == \ | |
erf(sqrt(x)) | |
# 8.4.19 | |
assert simplify(IMT(gamma(a/2 + s)/gamma(a/2 - s + 1), s, x, (-re(a)/2, Rational(3, 4)))) \ | |
== besselj(a, 2*sqrt(x)) | |
assert simplify(IMT(2**a*gamma(S.Half - 2*s)*gamma(s + (a + 1)/2) | |
/ (gamma(1 - s - a/2)*gamma(1 - 2*s + a)), | |
s, x, (-(re(a) + 1)/2, Rational(1, 4)))) == \ | |
sin(sqrt(x))*besselj(a, sqrt(x)) | |
assert simplify(IMT(2**a*gamma(a/2 + s)*gamma(S.Half - 2*s) | |
/ (gamma(S.Half - s - a/2)*gamma(1 - 2*s + a)), | |
s, x, (-re(a)/2, Rational(1, 4)))) == \ | |
cos(sqrt(x))*besselj(a, sqrt(x)) | |
# TODO this comes out as an amazing mess, but simplifies nicely | |
assert simplify(IMT(gamma(a + s)*gamma(S.Half - s) | |
/ (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)), | |
s, x, (-re(a), S.Half))) == \ | |
besselj(a, sqrt(x))**2 | |
assert simplify(IMT(gamma(s)*gamma(S.Half - s) | |
/ (sqrt(pi)*gamma(1 - s - a)*gamma(1 + a - s)), | |
s, x, (0, S.Half))) == \ | |
besselj(-a, sqrt(x))*besselj(a, sqrt(x)) | |
assert simplify(IMT(4**s*gamma(-2*s + 1)*gamma(a/2 + b/2 + s) | |
/ (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1) | |
*gamma(a/2 + b/2 - s + 1)), | |
s, x, (-(re(a) + re(b))/2, S.Half))) == \ | |
besselj(a, sqrt(x))*besselj(b, sqrt(x)) | |
# Section 8.4.20 | |
# TODO this can be further simplified! | |
assert simplify(IMT(-2**(2*s)*cos(pi*a/2 - pi*b/2 + pi*s)*gamma(-2*s + 1) * | |
gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) / | |
(pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)), | |
s, x, | |
(Max(-re(a)/2 - re(b)/2, -re(a)/2 + re(b)/2), S.Half))) == \ | |
besselj(a, sqrt(x))*-(besselj(-b, sqrt(x)) - | |
besselj(b, sqrt(x))*cos(pi*b))/sin(pi*b) | |
# TODO more | |
# for coverage | |
assert IMT(pi/cos(pi*s), s, x, (0, S.Half)) == sqrt(x)/(x + 1) | |
def test_fourier_transform(): | |
from sympy.core.function import (expand, expand_complex, expand_trig) | |
from sympy.polys.polytools import factor | |
from sympy.simplify.simplify import simplify | |
FT = fourier_transform | |
IFT = inverse_fourier_transform | |
def simp(x): | |
return simplify(expand_trig(expand_complex(expand(x)))) | |
def sinc(x): | |
return sin(pi*x)/(pi*x) | |
k = symbols('k', real=True) | |
f = Function("f") | |
# TODO for this to work with real a, need to expand abs(a*x) to abs(a)*abs(x) | |
a = symbols('a', positive=True) | |
b = symbols('b', positive=True) | |
posk = symbols('posk', positive=True) | |
# Test unevaluated form | |
assert fourier_transform(f(x), x, k) == FourierTransform(f(x), x, k) | |
assert inverse_fourier_transform( | |
f(k), k, x) == InverseFourierTransform(f(k), k, x) | |
# basic examples from wikipedia | |
assert simp(FT(Heaviside(1 - abs(2*a*x)), x, k)) == sinc(k/a)/a | |
# TODO IFT is a *mess* | |
assert simp(FT(Heaviside(1 - abs(a*x))*(1 - abs(a*x)), x, k)) == sinc(k/a)**2/a | |
# TODO IFT | |
assert factor(FT(exp(-a*x)*Heaviside(x), x, k), extension=I) == \ | |
1/(a + 2*pi*I*k) | |
# NOTE: the ift comes out in pieces | |
assert IFT(1/(a + 2*pi*I*x), x, posk, | |
noconds=False) == (exp(-a*posk), True) | |
assert IFT(1/(a + 2*pi*I*x), x, -posk, | |
noconds=False) == (0, True) | |
assert IFT(1/(a + 2*pi*I*x), x, symbols('k', negative=True), | |
noconds=False) == (0, True) | |
# TODO IFT without factoring comes out as meijer g | |
assert factor(FT(x*exp(-a*x)*Heaviside(x), x, k), extension=I) == \ | |
1/(a + 2*pi*I*k)**2 | |
assert FT(exp(-a*x)*sin(b*x)*Heaviside(x), x, k) == \ | |
b/(b**2 + (a + 2*I*pi*k)**2) | |
assert FT(exp(-a*x**2), x, k) == sqrt(pi)*exp(-pi**2*k**2/a)/sqrt(a) | |
assert IFT(sqrt(pi/a)*exp(-(pi*k)**2/a), k, x) == exp(-a*x**2) | |
assert FT(exp(-a*abs(x)), x, k) == 2*a/(a**2 + 4*pi**2*k**2) | |
# TODO IFT (comes out as meijer G) | |
# TODO besselj(n, x), n an integer > 0 actually can be done... | |
# TODO are there other common transforms (no distributions!)? | |
def test_sine_transform(): | |
t = symbols("t") | |
w = symbols("w") | |
a = symbols("a") | |
f = Function("f") | |
# Test unevaluated form | |
assert sine_transform(f(t), t, w) == SineTransform(f(t), t, w) | |
assert inverse_sine_transform( | |
f(w), w, t) == InverseSineTransform(f(w), w, t) | |
assert sine_transform(1/sqrt(t), t, w) == 1/sqrt(w) | |
assert inverse_sine_transform(1/sqrt(w), w, t) == 1/sqrt(t) | |
assert sine_transform((1/sqrt(t))**3, t, w) == 2*sqrt(w) | |
assert sine_transform(t**(-a), t, w) == 2**( | |
-a + S.Half)*w**(a - 1)*gamma(-a/2 + 1)/gamma((a + 1)/2) | |
assert inverse_sine_transform(2**(-a + S( | |
1)/2)*w**(a - 1)*gamma(-a/2 + 1)/gamma(a/2 + S.Half), w, t) == t**(-a) | |
assert sine_transform( | |
exp(-a*t), t, w) == sqrt(2)*w/(sqrt(pi)*(a**2 + w**2)) | |
assert inverse_sine_transform( | |
sqrt(2)*w/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t) | |
assert sine_transform( | |
log(t)/t, t, w) == sqrt(2)*sqrt(pi)*-(log(w**2) + 2*EulerGamma)/4 | |
assert sine_transform( | |
t*exp(-a*t**2), t, w) == sqrt(2)*w*exp(-w**2/(4*a))/(4*a**Rational(3, 2)) | |
assert inverse_sine_transform( | |
sqrt(2)*w*exp(-w**2/(4*a))/(4*a**Rational(3, 2)), w, t) == t*exp(-a*t**2) | |
def test_cosine_transform(): | |
from sympy.functions.special.error_functions import (Ci, Si) | |
t = symbols("t") | |
w = symbols("w") | |
a = symbols("a") | |
f = Function("f") | |
# Test unevaluated form | |
assert cosine_transform(f(t), t, w) == CosineTransform(f(t), t, w) | |
assert inverse_cosine_transform( | |
f(w), w, t) == InverseCosineTransform(f(w), w, t) | |
assert cosine_transform(1/sqrt(t), t, w) == 1/sqrt(w) | |
assert inverse_cosine_transform(1/sqrt(w), w, t) == 1/sqrt(t) | |
assert cosine_transform(1/( | |
a**2 + t**2), t, w) == sqrt(2)*sqrt(pi)*exp(-a*w)/(2*a) | |
assert cosine_transform(t**( | |
-a), t, w) == 2**(-a + S.Half)*w**(a - 1)*gamma((-a + 1)/2)/gamma(a/2) | |
assert inverse_cosine_transform(2**(-a + S( | |
1)/2)*w**(a - 1)*gamma(-a/2 + S.Half)/gamma(a/2), w, t) == t**(-a) | |
assert cosine_transform( | |
exp(-a*t), t, w) == sqrt(2)*a/(sqrt(pi)*(a**2 + w**2)) | |
assert inverse_cosine_transform( | |
sqrt(2)*a/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t) | |
assert cosine_transform(exp(-a*sqrt(t))*cos(a*sqrt( | |
t)), t, w) == a*exp(-a**2/(2*w))/(2*w**Rational(3, 2)) | |
assert cosine_transform(1/(a + t), t, w) == sqrt(2)*( | |
(-2*Si(a*w) + pi)*sin(a*w)/2 - cos(a*w)*Ci(a*w))/sqrt(pi) | |
assert inverse_cosine_transform(sqrt(2)*meijerg(((S.Half, 0), ()), ( | |
(S.Half, 0, 0), (S.Half,)), a**2*w**2/4)/(2*pi), w, t) == 1/(a + t) | |
assert cosine_transform(1/sqrt(a**2 + t**2), t, w) == sqrt(2)*meijerg( | |
((S.Half,), ()), ((0, 0), (S.Half,)), a**2*w**2/4)/(2*sqrt(pi)) | |
assert inverse_cosine_transform(sqrt(2)*meijerg(((S.Half,), ()), ((0, 0), (S.Half,)), a**2*w**2/4)/(2*sqrt(pi)), w, t) == 1/(t*sqrt(a**2/t**2 + 1)) | |
def test_hankel_transform(): | |
r = Symbol("r") | |
k = Symbol("k") | |
nu = Symbol("nu") | |
m = Symbol("m") | |
a = symbols("a") | |
assert hankel_transform(1/r, r, k, 0) == 1/k | |
assert inverse_hankel_transform(1/k, k, r, 0) == 1/r | |
assert hankel_transform( | |
1/r**m, r, k, 0) == 2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2) | |
assert inverse_hankel_transform( | |
2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2), k, r, 0) == r**(-m) | |
assert hankel_transform(1/r**m, r, k, nu) == ( | |
2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2)) | |
assert inverse_hankel_transform(2**(-m + 1)*k**( | |
m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2), k, r, nu) == r**(-m) | |
assert hankel_transform(r**nu*exp(-a*r), r, k, nu) == \ | |
2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - S( | |
3)/2)*gamma(nu + Rational(3, 2))/sqrt(pi) | |
assert inverse_hankel_transform( | |
2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - Rational(3, 2))*gamma( | |
nu + Rational(3, 2))/sqrt(pi), k, r, nu) == r**nu*exp(-a*r) | |
def test_issue_7181(): | |
assert mellin_transform(1/(1 - x), x, s) != None | |
def test_issue_8882(): | |
# This is the original test. | |
# from sympy import diff, Integral, integrate | |
# r = Symbol('r') | |
# psi = 1/r*sin(r)*exp(-(a0*r)) | |
# h = -1/2*diff(psi, r, r) - 1/r*psi | |
# f = 4*pi*psi*h*r**2 | |
# assert integrate(f, (r, -oo, 3), meijerg=True).has(Integral) == True | |
# To save time, only the critical part is included. | |
F = -a**(-s + 1)*(4 + 1/a**2)**(-s/2)*sqrt(1/a**2)*exp(-s*I*pi)* \ | |
sin(s*atan(sqrt(1/a**2)/2))*gamma(s) | |
raises(IntegralTransformError, lambda: | |
inverse_mellin_transform(F, s, x, (-1, oo), | |
**{'as_meijerg': True, 'needeval': True})) | |
def test_issue_12591(): | |
x, y = symbols("x y", real=True) | |
assert fourier_transform(exp(x), x, y) == FourierTransform(exp(x), x, y) | |