mbuali's picture
Upload folder using huggingface_hub
d1ceb73 verified
# mypy: allow-untyped-defs
import operator
from typing import Any, Dict, List, Optional, Set, Tuple, Union
import torch
import torch.export._trace
from torch.export.exported_program import ExportedProgram
from torch.export.graph_signature import (
ConstantArgument,
InputKind,
InputSpec,
OutputKind,
OutputSpec,
TensorArgument,
)
from torch.fx import subgraph_rewriter
from torch.onnx.utils import _create_jit_graph
from torchgen.model import FunctionSchema
def inplace_optimize_sym_size_div(gm: torch.fx.GraphModule):
def pattern(im, dim, scale):
sym_size_int = torch.ops.aten.sym_size.int(im, dim)
scalar_tensor = torch.ops.aten.scalar_tensor(sym_size_int)
div_scalar_mode = torch.ops.aten.div.Scalar_mode(
scalar_tensor, scale, rounding_mode="trunc"
)
int_tensor = torch.ops.aten.Int.Tensor(div_scalar_mode)
return int_tensor
def replacement(im, dim, scale):
sym_size_int = torch.ops.aten.sym_size.int(im, dim)
return sym_size_int // scale
replaced_patterns = subgraph_rewriter.replace_pattern(gm, pattern, replacement)
def normalize_name(name: str) -> str:
return name.replace(".", "_")
def ir_name_to_func_name(name: str) -> str:
"""prim::If -> convert_prim_If"""
name_list = name.split("::")
return "convert_" + "_".join(name_list)
# Those operators will be automatically populated to a instance method
# of TS2FXGraphConverter with name convert_<namespace>_<opname>().
# Please check __init__ for method population implementations.
kind_to_standard_operators = {
"prim::TupleIndex": operator.getitem,
"aten::__is__": operator.is_,
"aten::__isnot__": operator.is_not,
"aten::__not__": operator.not_,
"aten::__contains__": operator.contains,
}
def get_op_overload(node: torch._C.Node):
schema_str = node.schema()
schema = FunctionSchema.parse(schema_str)
ns, op_name = str(schema.name.name).split("::")
override = schema.name.overload_name
try:
op_overload_mod = getattr(torch.ops, ns)
op_overload_packet = getattr(op_overload_mod, op_name)
if override:
op_overload = getattr(op_overload_packet, override)
else:
op_overload = op_overload_packet.default
except Exception as e:
raise RuntimeError(
f"Unable to find operator {node.kind()} with schema {node.schema}"
) from e
return op_overload
class TS2FXGraphConverter:
def __init__(
self,
ts_graph: Union[torch._C.Graph, torch._C.Block],
param_names: Set[str],
buffer_names: Set[str],
):
self.ts_graph = ts_graph
self.param_names = param_names
self.buffer_names = buffer_names
self.fx_graph: torch.fx.Graph = torch.fx.Graph()
self.input_specs: List[InputSpec] = []
self.output_specs: List[OutputSpec] = []
self.name_to_node: Dict[
str, Union[torch.fx.Node, List[torch.fx.Node], Dict[Any, torch.fx.Node]]
] = {}
self.constant_map: Dict[str, Any] = {}
self.attribute_map: Dict[str, Any] = {}
self.tensor_constants: Dict[str, torch.Tensor] = {}
self.subgraphs: Dict[str, torch.fx.GraphModule] = {}
# Populate methods for the standard operators.
for k in kind_to_standard_operators.keys():
handler_func_name = ir_name_to_func_name(k)
# Create an indirect function call:
# convert_<namespace>_<opname> --> lambda node: _convert_standard_operator(node)
setattr(
self,
handler_func_name,
lambda node: self._convert_standard_operators(node),
)
def add_subgraph(self, subgraph) -> str:
name = f"subgraph_{len(self.subgraphs)}"
self.subgraphs[name] = subgraph
return name
def get_args_kwargs(self, node: torch._C.Node, schema):
args = []
kwargs = {}
for input, schema_arg in zip(node.inputs(), schema.arguments):
if schema_arg.kwarg_only:
kwargs[schema_arg.name] = self.get_fx_value(input)
else:
args.append(self.get_fx_value(input))
return tuple(args), kwargs
def get_fx_value(self, value: torch._C.Value):
value_name = value.debugName()
if value_name in self.name_to_node:
input_node = self.name_to_node[value_name]
return input_node
elif value_name in self.attribute_map:
attr_name = self.attribute_map[value_name]
if attr_name in self.name_to_node:
input_node = self.name_to_node[attr_name]
return input_node
else:
raise ValueError(f"Value {attr_name} not found")
elif value_name in self.constant_map:
return self.constant_map[value_name]
else:
raise ValueError(f"Input {value_name} not found")
def convert(self) -> torch.fx.GraphModule:
self.convert_graph_inputs()
for node in self.ts_graph.nodes():
self.convert_node(node)
self.convert_graph_outputs()
gm = torch.fx.GraphModule(self.subgraphs, self.fx_graph)
inplace_optimize_sym_size_div(gm)
gm.graph.lint()
return gm
def convert_graph_inputs(self):
for graph_input in self.ts_graph.inputs():
name = graph_input.debugName()
normalized_name = normalize_name(name)
fx_node = self.fx_graph.placeholder(normalized_name)
# fx_node.meta["val"] = FakeTensor()
# TODO: set fx_node.meta["val"]
self.name_to_node[name] = fx_node
if name in self.param_names:
self.input_specs.append(
InputSpec(
InputKind.PARAMETER,
arg=TensorArgument(name=normalized_name),
target=name,
)
)
elif name in self.buffer_names:
self.input_specs.append(
InputSpec(
InputKind.BUFFER,
arg=TensorArgument(name=normalized_name),
target=name,
persistent=True,
)
)
else:
self.input_specs.append(
InputSpec(
InputKind.USER_INPUT,
arg=TensorArgument(name=normalized_name),
target=name,
)
)
def convert_prim_Constant(self, node: torch._C.Node):
name = node.output().debugName()
value: Any = None
if node.hasAttribute("value"):
constant_kind = node.kindOf("value")
if constant_kind == "i":
value = node.i("value")
elif constant_kind == "f":
value = node.f("value")
elif constant_kind == "s":
value = node.s("value")
elif constant_kind == "t":
# lift tensor constant as a placeholder
placeholder_name = f"constant_{name}"
fx_node = self.fx_graph.placeholder(placeholder_name)
self.name_to_node[name] = fx_node
self.tensor_constants[placeholder_name] = node.t("value")
self.input_specs.append(
InputSpec(
InputKind.CONSTANT_TENSOR,
arg=TensorArgument(name=placeholder_name),
target=placeholder_name,
)
)
value = fx_node
elif constant_kind == "ival":
value = node.ival("value")
else:
raise ValueError(f"Unsupported constant type: {node.kindOf('value')}")
else:
value = None
self.constant_map[name] = value
def convert_prim_device(self, node: torch._C.Node):
input_type = node.input().type()
if input_type.isSubtypeOf(torch._C.TensorType.get()):
device = input_type.device() # type: ignore[attr-defined]
output_name = node.output().debugName()
self.constant_map[output_name] = device
else:
raise ValueError(f"Unsupported JitType ({input_type}) when get device")
def convert_prim_dtype(self, node: torch._C.Node):
dtype = node.input().type().dtype()
output_name = node.output().debugName()
self.constant_map[output_name] = dtype
def convert_prim_GetAttr(self, node: torch._C.Node):
def get_attr(name: str):
if name in self.attribute_map:
return self.attribute_map[name]
else:
raise ValueError(f"Attribute {name} not found")
output_name = node.output().debugName()
attr_name = node.s("name")
input_name = node.input().debugName()
root_attr_name = get_attr(input_name)
self.attribute_map[output_name] = (
f"{root_attr_name}.{attr_name}" if root_attr_name else attr_name
)
def convert_call_function_op(self, node: torch._C.Node):
target = get_op_overload(node)
if target is torch.ops.aten.size.int:
target = torch.ops.aten.sym_size.int
args, kwargs = self.get_args_kwargs(node, target._schema)
fx_node = self.fx_graph.call_function(target, args, kwargs)
# TODO: covnert sourceRange() into stack_trace
# fx_node.meta["stack_trace"] = node.sourceRange()
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_prim_TupleConstruct(self, node: torch._C.Node):
self._convert_prim_iterator(node)
def convert_prim_ListConstruct(self, node: torch._C.Node):
self._convert_prim_iterator(node)
def _convert_prim_iterator(self, node: torch._C.Node):
output_list = []
for inp in node.inputs():
output_list.append(self.get_fx_value(inp))
output_name = node.output().debugName()
self.name_to_node[output_name] = output_list
def convert_prim_DictConstruct(self, node: torch._C.Node):
output_dict = {}
k, v = None, None
for i, inp in enumerate(node.inputs()):
# We assume key value are stored in pair in the DictConstruct.
# The first element is the key and the following is the value.
if i % 2 == 0:
k = self.get_fx_value(inp)
else:
v = self.get_fx_value(inp)
assert (
k is not None and v is not None
), "DictConstruct has an empty key value pair."
output_dict[k] = v
k, v = None, None
assert (
k is None and v is None
), "DictConstruct has an odd number of elements (violating our assumption)."
output_name = node.output().debugName()
self.name_to_node[output_name] = output_dict
def convert_prim_ListUnpack(self, node: torch._C.Node):
self._convert_prim_unpack_iterator(node)
def convert_prim_TupleUnpack(self, node: torch._C.Node):
self._convert_prim_unpack_iterator(node)
def _convert_prim_unpack_iterator(self, node: torch._C.Node):
# Single input and multiple outputs for unpacking.
for i, outp in enumerate(node.outputs()):
outp_name = outp.debugName()
inp = self.get_fx_value(node.input())
fx_node = self.fx_graph.call_function(operator.getitem, (inp, i))
self.name_to_node[outp_name] = fx_node
def convert_aten_Int(self, node: torch._C.Node):
# converts aten::Int as aten._to_copy + aten::_local_scalar_dense
target = torch.ops.aten._to_copy.default
args = tuple(self.get_fx_value(input) for input in node.inputs())
to_copy_node = self.fx_graph.call_function(target, args, {"dtype": torch.int32})
fx_node = self.fx_graph.call_function(
torch.ops.aten._local_scalar_dense.default, (to_copy_node,)
)
# TODO: covnert sourceRange() into stack_trace
# fx_node.meta["stack_trace"] = node.sourceRange()
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_prim_NumToTensor(self, node: torch._C.Node):
# converts prim::NumToTensor as aten.scalar_tensor
target = torch.ops.aten.scalar_tensor
args = tuple(self.get_fx_value(input) for input in node.inputs())
fx_node = self.fx_graph.call_function(target, args)
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_prim_CreateObject(self, node: torch._C.Node):
output_name = node.output().debugName()
self.attribute_map[output_name] = ""
def convert_aten__convolution(self, node: torch._C.Node):
# converts aten::_convolution as aten.convolution, since aten::_convolution
# doesn't have a meta function
target = torch.ops.aten.convolution.default
args, kwargs = self.get_args_kwargs(node, target._schema)
fx_node = self.fx_graph.call_function(target, args, kwargs)
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_aten_div(self, node: torch._C.Node):
target = get_op_overload(node)
schema = target._schema
args, kwargs = self.get_args_kwargs(node, schema)
# converts aten::div.Tensor_mode(x, tensor_constant)
# as aten.div.Scalar_mode(x, tensor_constant.item())
if schema.overload_name == "Tensor_mode":
arg1_name = args[1].name
if arg1_name in self.tensor_constants:
tensor_constant = self.tensor_constants[arg1_name]
if tensor_constant.numel() == 1:
updated_args = list(args)
updated_args[1] = self.tensor_constants[arg1_name].item()
fx_node = self.fx_graph.call_function(
torch.ops.aten.div.Scalar_mode,
tuple(updated_args),
kwargs,
)
# TODO: covnert sourceRange() into stack_trace
# fx_node.meta["stack_trace"] = node.sourceRange()
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
return
self.convert_call_function_op(node)
def convert_aten___getitem__(self, node: torch._C.Node):
input_container, index = tuple(
self.get_fx_value(input) for input in node.inputs()
)
fx_node = self.fx_graph.call_function(
operator.getitem, (input_container, index)
)
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_prim_If(self, node: torch._C.Node):
inputs = list(node.inputs())
assert len(inputs) == 1
predicate = self.get_fx_value(inputs[0])
# Get union of inputs to blocks
arguments = set()
for block in node.blocks():
block_args = set()
# TODO: block.inputs(), not sure what theyre used for
for block_node in block.nodes():
for block_node_in in block_node.inputs():
if block_node_in.debugName() in self.name_to_node:
block_args.add(block_node_in.debugName())
arguments.update(block_args)
arguments = list(arguments)
# Convert blocks to subgraphs
subgraph_nodes = []
for block in node.blocks():
subgraph_converter = TS2FXGraphConverter(block, set(), set())
subgraph_converter.constant_map = self.constant_map
for block_arg in arguments:
normalized_block_arg_name = normalize_name(block_arg)
placeholder_node = subgraph_converter.fx_graph.placeholder(
normalized_block_arg_name
)
subgraph_converter.name_to_node[block_arg] = placeholder_node
subgraph = subgraph_converter.convert()
subgraph_name = self.add_subgraph(subgraph)
subgraph_nodes.append(self.fx_graph.get_attr(subgraph_name))
assert len(subgraph_nodes) == 2
fx_block_args = [self.name_to_node[arg_name] for arg_name in arguments]
args = (
predicate,
subgraph_nodes[0],
subgraph_nodes[1],
tuple(fx_block_args),
)
cond_node = self.fx_graph.call_function(torch.cond, args, {})
output_name = node.output().debugName()
self.name_to_node[output_name] = cond_node
def convert_aten_Bool(self, node: torch._C.Node):
self._convert_as_noop(node)
def _convert_as_noop(self, node: torch._C.Node):
# Converts the node as a no-op by mapping its output node as arg[0]
target = get_op_overload(node)
schema = target._schema
args, kwargs = self.get_args_kwargs(node, schema)
output_name = node.output().debugName()
self.name_to_node[output_name] = args[0]
def convert_profiler__record_function_enter_new(self, node: torch._C.Node):
target = torch.ops.profiler._record_function_enter_new
args = tuple(self.get_fx_value(input) for input in node.inputs())
fx_node = self.fx_graph.call_function(target, args)
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_profiler__record_function_exit(self, node: torch._C.Node):
# _record_function_exit has side effect so we keep it in fx.graph
# currently, _record_function_enter_new and _record_function_exit are
# discarded during `retrace_as_exported_program`.
target = torch.ops.profiler._record_function_exit
args = tuple(self.get_fx_value(input) for input in node.inputs())
self.fx_graph.call_function(target, args)
def _convert_standard_operators(self, node: torch._C.Node):
target = kind_to_standard_operators[node.kind()]
args = tuple(self.get_fx_value(input) for input in node.inputs())
fx_node = self.fx_graph.call_function(target, args)
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_node(self, node: torch._C.Node):
node_kind = node.kind()
# Get handler based on namespace and operator name.
# Provide a default node handler as well in case we don't find
# matching converter for that.
handler_func_name = ir_name_to_func_name(node_kind)
handler_func = getattr(self, handler_func_name, self.convert_call_function_op)
handler_func(node)
def convert_graph_outputs(self):
args = []
for graph_output in self.ts_graph.outputs():
output_name = graph_output.debugName()
if output_name in self.name_to_node:
args.append(self.name_to_node[output_name])
self.output_specs.append(
OutputSpec(
OutputKind.USER_OUTPUT,
arg=TensorArgument(name=output_name),
target=output_name,
)
)
elif output_name in self.constant_map:
args.append(self.constant_map[output_name])
self.output_specs.append(
OutputSpec(
OutputKind.USER_OUTPUT,
arg=ConstantArgument(
name=output_name, value=self.constant_map[output_name]
),
target=output_name,
)
)
else:
raise ValueError(f"Output {output_name} not found")
self.fx_graph.output(
args[0]
) # Get rid of an extra list wrapped around final output.
class TS2EPConverter:
# TorchScript model to ExportedProgram converter
def __init__(
self,
ts_model,
sample_args: Tuple[Any, ...],
sample_kwargs: Optional[Dict[str, Any]] = None,
):
self.ts_model = ts_model
self.ts_graph, self.params, _, _ = _create_jit_graph(ts_model, sample_args)
self.sample_args = sample_args
self.sample_kwargs = sample_kwargs
self.param_names: Set[str] = {name for name, _ in ts_model.named_parameters()}
self.buffer_names: Set[str] = {name for name, _ in ts_model.named_buffers()}
def convert(self) -> ExportedProgram:
graph_converter = TS2FXGraphConverter(
self.ts_graph, self.param_names, self.buffer_names
)
gm = graph_converter.convert()
ep = self.retrace_as_exported_program(gm, graph_converter.tensor_constants)
return ep
def retrace_as_exported_program(self, gm: torch.fx.GraphModule, tensor_constants):
# TODO: adjust input orders to match GraphSignature convention
inputs = [*self.sample_args, *self.params, *tensor_constants.values()]
ep = torch.export._trace._export(
gm,
tuple(inputs),
strict=False,
pre_dispatch=True,
)
return ep