|
|
|
import dataclasses |
|
import inspect |
|
import sys |
|
from typing import Any, Callable, Dict, Iterable, Tuple |
|
|
|
import torch |
|
import torch._utils_internal as _utils_internal |
|
from torch import _C |
|
|
|
|
|
@dataclasses.dataclass |
|
class Kernel: |
|
"""Models a (function, source location)""" |
|
|
|
func: Callable |
|
source: str |
|
|
|
def __call__(self, *args, **kwargs): |
|
return self.func(*args, **kwargs) |
|
|
|
|
|
class RegistrationHandle: |
|
"""Does something when someone calls .destroy() on it""" |
|
|
|
def __init__(self, on_destroy: Callable): |
|
self._on_destroy = on_destroy |
|
|
|
def destroy(self) -> None: |
|
self._on_destroy() |
|
|
|
|
|
def get_source(stacklevel: int) -> str: |
|
"""Get a string that represents the caller. |
|
|
|
Example: "/path/to/foo.py:42" |
|
|
|
Use stacklevel=1 to get the caller's source |
|
Use stacklevel=2 to get the caller's caller's source |
|
etc. |
|
""" |
|
frame = inspect.getframeinfo(sys._getframe(stacklevel)) |
|
source = f"{frame.filename}:{frame.lineno}" |
|
return source |
|
|
|
|
|
def parse_namespace(qualname: str) -> Tuple[str, str]: |
|
splits = qualname.split("::") |
|
if len(splits) != 2: |
|
raise ValueError( |
|
f"Expected `qualname` to be of the form " |
|
f'"namespace::name", but got {qualname}. ' |
|
f"The qualname passed to the torch.library APIs must consist " |
|
f"of a namespace and a name, e.g. aten::sin" |
|
) |
|
return splits[0], splits[1] |
|
|
|
|
|
def lookup_op(qualname: str) -> torch._ops.OpOverload: |
|
namespace, name = parse_namespace(qualname) |
|
if "." in name: |
|
name, overload = name.split(".") |
|
else: |
|
overload = "default" |
|
ns = getattr(torch.ops, namespace) |
|
packet = getattr(ns, name) |
|
return getattr(packet, overload) |
|
|
|
|
|
def is_builtin(op: torch._ops.OpOverload) -> bool: |
|
assert isinstance(op, torch._ops.OpOverload) |
|
return op.namespace in {"aten", "prim", "prims"} |
|
|
|
|
|
def is_functional_schema(schema: Any) -> bool: |
|
"""Check if the schema is functional. |
|
|
|
An operator is functional if: |
|
- it does not mutate any of its inputs |
|
- it does not return a view on any of its inputs |
|
- it has at least one return |
|
""" |
|
|
|
def is_functional(schema): |
|
if schema.is_mutable: |
|
return False |
|
rets = schema.returns |
|
is_non_mutating_view = len(rets) > 0 and any( |
|
r.alias_info is not None and not r.alias_info.is_write for r in rets |
|
) |
|
if is_non_mutating_view: |
|
return False |
|
if not schema.returns: |
|
return False |
|
return True |
|
|
|
if isinstance(schema, torch._C.FunctionSchema): |
|
return is_functional(schema) |
|
|
|
|
|
from torchgen.model import FunctionSchema |
|
|
|
if isinstance(schema, str): |
|
schema = FunctionSchema.parse(schema) |
|
assert isinstance(schema, FunctionSchema) |
|
return is_functional(schema) |
|
|
|
|
|
|
|
def is_tensorlist_like_type(typ: Any) -> bool: |
|
return ( |
|
typ == _C.ListType(_C.TensorType.get()) |
|
or typ == _C.ListType(_C.OptionalType(_C.TensorType.get())) |
|
or typ == _C.OptionalType(_C.ListType(_C.TensorType.get())) |
|
or typ == _C.OptionalType(_C.ListType(_C.OptionalType(_C.TensorType.get()))) |
|
) |
|
|
|
|
|
|
|
def is_tensor_like_type(typ: Any) -> bool: |
|
return typ == _C.TensorType.get() or typ == _C.OptionalType(_C.TensorType.get()) |
|
|
|
|
|
def mutates_and_returns_first_arg(op: torch._ops.OpOverload): |
|
"""Check if an op is an inplace aten op, i.e. it mutates and returns the first arg. |
|
|
|
TODO: torchgen/model.py's FunctionSchema.parse is the source of truth for this, |
|
but not all PyTorch builds have torchgen (due to the yaml dependency being weird). |
|
Figure this out. |
|
|
|
Example: add_(Tensor(a!) x, Tensor y) -> Tensor(a) |
|
""" |
|
if op.namespace != "aten": |
|
return False |
|
schema = op._schema |
|
if not len(schema.returns) == 1: |
|
return False |
|
if schema.returns[0].alias_info is None: |
|
return False |
|
alias_set = schema.returns[0].alias_info.after_set |
|
if len(alias_set) != 1: |
|
return False |
|
loc = next(iter(alias_set)) |
|
if len(schema.arguments) < 1: |
|
return False |
|
first_arg = schema.arguments[0] |
|
if first_arg.alias_info is None: |
|
return False |
|
if not first_arg.alias_info.is_write: |
|
return False |
|
alias_set = first_arg.alias_info.after_set |
|
if len(alias_set) != 1: |
|
return False |
|
if loc != next(iter(alias_set)): |
|
return False |
|
for arg in schema.arguments[1:]: |
|
if arg.alias_info is not None: |
|
return False |
|
return True |
|
|
|
|
|
def fill_defaults(schema, args, kwargs): |
|
new_args = [] |
|
new_kwargs = {} |
|
for i in range(len(schema.arguments)): |
|
info = schema.arguments[i] |
|
if info.kwarg_only: |
|
if info.name in kwargs: |
|
new_kwargs[info.name] = kwargs[info.name] |
|
else: |
|
new_kwargs[info.name] = info.default_value |
|
else: |
|
if i < len(args): |
|
new_args.append(args[i]) |
|
else: |
|
new_args.append(info.default_value) |
|
return tuple(new_args), new_kwargs |
|
|
|
|
|
def zip_schema( |
|
schema: _C.FunctionSchema, args: Tuple[Any, ...], kwargs: Dict[str, Any] |
|
) -> Iterable[Tuple[_C.Argument, Any]]: |
|
"""zips schema.arguments and (args, kwargs) together. |
|
|
|
Assumes that (args, kwargs) were the inputs to some torch._ops.OpOverload: |
|
that is, kwargs must be keyword-only arguments and default values may be omitted. |
|
""" |
|
assert len(schema.arguments) >= len(args) + len(kwargs) |
|
for i in range(len(schema.arguments)): |
|
info = schema.arguments[i] |
|
if info.kwarg_only: |
|
if info.name in kwargs: |
|
yield info, kwargs[info.name] |
|
continue |
|
if i >= len(args): |
|
|
|
|
|
|
|
continue |
|
yield info, args[i] |
|
return |
|
|
|
|
|
def can_generate_trivial_fake_impl(op: torch._ops.OpOverload) -> bool: |
|
assert isinstance(op, torch._ops.OpOverload) |
|
if is_builtin(op): |
|
|
|
|
|
return False |
|
schema = op._schema |
|
|
|
if not schema.is_mutable: |
|
return False |
|
if len(schema.returns) > 0: |
|
return False |
|
|
|
return True |
|
|
|
|
|
def requires_set_python_module() -> bool: |
|
"""If an op was defined in C++ and extended from Python using the |
|
torch.library APIs, returns if we require that there have been a |
|
m.set_python_module("mylib.ops") call from C++ that associates |
|
the C++ op with a python module. |
|
""" |
|
return getattr(_utils_internal, "REQUIRES_SET_PYTHON_MODULE", True) |
|
|
|
|
|
def handle_dispatch_mode(curr_mode, op_overload, *args, **kwargs): |
|
assert isinstance(curr_mode, torch.utils._python_dispatch.TorchDispatchMode) |
|
overload_types = [] |
|
args_flattened, _ = torch.utils._pytree.tree_flatten((args, kwargs.values())) |
|
for a in args_flattened: |
|
|
|
|
|
|
|
|
|
if isinstance(a, torch.Tensor) and torch._C._dispatch_keys(a).has( |
|
torch._C.DispatchKey.Python |
|
): |
|
overload_types.append(type(a)) |
|
|
|
|
|
return curr_mode.__torch_dispatch__(op_overload, overload_types, args, kwargs) |
|
|
|
|
|
def has_kwarg_only_args(schema: _C.FunctionSchema): |
|
return any(a.kwarg_only for a in schema.arguments) |
|
|
|
|
|
def has_kwarg_only_tensors(schema: _C.FunctionSchema): |
|
for a in schema.arguments: |
|
if not (is_tensor_like_type(a.type) or is_tensorlist_like_type(a.type)): |
|
continue |
|
if not a.kwarg_only: |
|
continue |
|
return True |
|
return False |
|
|