|
|
|
"""Provide an API for writing protocol buffers to event files to be consumed by TensorBoard for visualization.""" |
|
|
|
import os |
|
import time |
|
from typing import List, Optional, TYPE_CHECKING, Union |
|
|
|
import torch |
|
|
|
if TYPE_CHECKING: |
|
from matplotlib.figure import Figure |
|
from tensorboard.compat import tf |
|
from tensorboard.compat.proto import event_pb2 |
|
from tensorboard.compat.proto.event_pb2 import Event, SessionLog |
|
from tensorboard.plugins.projector.projector_config_pb2 import ProjectorConfig |
|
from tensorboard.summary.writer.event_file_writer import EventFileWriter |
|
|
|
from ._convert_np import make_np |
|
from ._embedding import get_embedding_info, make_mat, make_sprite, make_tsv, write_pbtxt |
|
from ._onnx_graph import load_onnx_graph |
|
from ._pytorch_graph import graph |
|
from ._utils import figure_to_image |
|
from .summary import ( |
|
audio, |
|
custom_scalars, |
|
histogram, |
|
histogram_raw, |
|
hparams, |
|
image, |
|
image_boxes, |
|
mesh, |
|
pr_curve, |
|
pr_curve_raw, |
|
scalar, |
|
tensor_proto, |
|
text, |
|
video, |
|
) |
|
|
|
__all__ = ["FileWriter", "SummaryWriter"] |
|
|
|
|
|
class FileWriter: |
|
"""Writes protocol buffers to event files to be consumed by TensorBoard. |
|
|
|
The `FileWriter` class provides a mechanism to create an event file in a |
|
given directory and add summaries and events to it. The class updates the |
|
file contents asynchronously. This allows a training program to call methods |
|
to add data to the file directly from the training loop, without slowing down |
|
training. |
|
""" |
|
|
|
def __init__(self, log_dir, max_queue=10, flush_secs=120, filename_suffix=""): |
|
"""Create a `FileWriter` and an event file. |
|
|
|
On construction the writer creates a new event file in `log_dir`. |
|
The other arguments to the constructor control the asynchronous writes to |
|
the event file. |
|
|
|
Args: |
|
log_dir: A string. Directory where event file will be written. |
|
max_queue: Integer. Size of the queue for pending events and |
|
summaries before one of the 'add' calls forces a flush to disk. |
|
Default is ten items. |
|
flush_secs: Number. How often, in seconds, to flush the |
|
pending events and summaries to disk. Default is every two minutes. |
|
filename_suffix: A string. Suffix added to all event filenames |
|
in the log_dir directory. More details on filename construction in |
|
tensorboard.summary.writer.event_file_writer.EventFileWriter. |
|
""" |
|
|
|
|
|
|
|
|
|
log_dir = str(log_dir) |
|
self.event_writer = EventFileWriter( |
|
log_dir, max_queue, flush_secs, filename_suffix |
|
) |
|
|
|
def get_logdir(self): |
|
"""Return the directory where event file will be written.""" |
|
return self.event_writer.get_logdir() |
|
|
|
def add_event(self, event, step=None, walltime=None): |
|
"""Add an event to the event file. |
|
|
|
Args: |
|
event: An `Event` protocol buffer. |
|
step: Number. Optional global step value for training process |
|
to record with the event. |
|
walltime: float. Optional walltime to override the default (current) |
|
walltime (from time.time()) seconds after epoch |
|
""" |
|
event.wall_time = time.time() if walltime is None else walltime |
|
if step is not None: |
|
|
|
|
|
event.step = int(step) |
|
self.event_writer.add_event(event) |
|
|
|
def add_summary(self, summary, global_step=None, walltime=None): |
|
"""Add a `Summary` protocol buffer to the event file. |
|
|
|
This method wraps the provided summary in an `Event` protocol buffer |
|
and adds it to the event file. |
|
|
|
Args: |
|
summary: A `Summary` protocol buffer. |
|
global_step: Number. Optional global step value for training process |
|
to record with the summary. |
|
walltime: float. Optional walltime to override the default (current) |
|
walltime (from time.time()) seconds after epoch |
|
""" |
|
event = event_pb2.Event(summary=summary) |
|
self.add_event(event, global_step, walltime) |
|
|
|
def add_graph(self, graph_profile, walltime=None): |
|
"""Add a `Graph` and step stats protocol buffer to the event file. |
|
|
|
Args: |
|
graph_profile: A `Graph` and step stats protocol buffer. |
|
walltime: float. Optional walltime to override the default (current) |
|
walltime (from time.time()) seconds after epoch |
|
""" |
|
graph = graph_profile[0] |
|
stepstats = graph_profile[1] |
|
event = event_pb2.Event(graph_def=graph.SerializeToString()) |
|
self.add_event(event, None, walltime) |
|
|
|
trm = event_pb2.TaggedRunMetadata( |
|
tag="step1", run_metadata=stepstats.SerializeToString() |
|
) |
|
event = event_pb2.Event(tagged_run_metadata=trm) |
|
self.add_event(event, None, walltime) |
|
|
|
def add_onnx_graph(self, graph, walltime=None): |
|
"""Add a `Graph` protocol buffer to the event file. |
|
|
|
Args: |
|
graph: A `Graph` protocol buffer. |
|
walltime: float. Optional walltime to override the default (current) |
|
_get_file_writerfrom time.time()) |
|
""" |
|
event = event_pb2.Event(graph_def=graph.SerializeToString()) |
|
self.add_event(event, None, walltime) |
|
|
|
def flush(self): |
|
"""Flushes the event file to disk. |
|
|
|
Call this method to make sure that all pending events have been written to |
|
disk. |
|
""" |
|
self.event_writer.flush() |
|
|
|
def close(self): |
|
"""Flushes the event file to disk and close the file. |
|
|
|
Call this method when you do not need the summary writer anymore. |
|
""" |
|
self.event_writer.close() |
|
|
|
def reopen(self): |
|
"""Reopens the EventFileWriter. |
|
|
|
Can be called after `close()` to add more events in the same directory. |
|
The events will go into a new events file. |
|
Does nothing if the EventFileWriter was not closed. |
|
""" |
|
self.event_writer.reopen() |
|
|
|
|
|
class SummaryWriter: |
|
"""Writes entries directly to event files in the log_dir to be consumed by TensorBoard. |
|
|
|
The `SummaryWriter` class provides a high-level API to create an event file |
|
in a given directory and add summaries and events to it. The class updates the |
|
file contents asynchronously. This allows a training program to call methods |
|
to add data to the file directly from the training loop, without slowing down |
|
training. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
log_dir=None, |
|
comment="", |
|
purge_step=None, |
|
max_queue=10, |
|
flush_secs=120, |
|
filename_suffix="", |
|
): |
|
"""Create a `SummaryWriter` that will write out events and summaries to the event file. |
|
|
|
Args: |
|
log_dir (str): Save directory location. Default is |
|
runs/**CURRENT_DATETIME_HOSTNAME**, which changes after each run. |
|
Use hierarchical folder structure to compare |
|
between runs easily. e.g. pass in 'runs/exp1', 'runs/exp2', etc. |
|
for each new experiment to compare across them. |
|
comment (str): Comment log_dir suffix appended to the default |
|
``log_dir``. If ``log_dir`` is assigned, this argument has no effect. |
|
purge_step (int): |
|
When logging crashes at step :math:`T+X` and restarts at step :math:`T`, |
|
any events whose global_step larger or equal to :math:`T` will be |
|
purged and hidden from TensorBoard. |
|
Note that crashed and resumed experiments should have the same ``log_dir``. |
|
max_queue (int): Size of the queue for pending events and |
|
summaries before one of the 'add' calls forces a flush to disk. |
|
Default is ten items. |
|
flush_secs (int): How often, in seconds, to flush the |
|
pending events and summaries to disk. Default is every two minutes. |
|
filename_suffix (str): Suffix added to all event filenames in |
|
the log_dir directory. More details on filename construction in |
|
tensorboard.summary.writer.event_file_writer.EventFileWriter. |
|
|
|
Examples:: |
|
|
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
# create a summary writer with automatically generated folder name. |
|
writer = SummaryWriter() |
|
# folder location: runs/May04_22-14-54_s-MacBook-Pro.local/ |
|
|
|
# create a summary writer using the specified folder name. |
|
writer = SummaryWriter("my_experiment") |
|
# folder location: my_experiment |
|
|
|
# create a summary writer with comment appended. |
|
writer = SummaryWriter(comment="LR_0.1_BATCH_16") |
|
# folder location: runs/May04_22-14-54_s-MacBook-Pro.localLR_0.1_BATCH_16/ |
|
|
|
""" |
|
torch._C._log_api_usage_once("tensorboard.create.summarywriter") |
|
if not log_dir: |
|
import socket |
|
from datetime import datetime |
|
|
|
current_time = datetime.now().strftime("%b%d_%H-%M-%S") |
|
log_dir = os.path.join( |
|
"runs", current_time + "_" + socket.gethostname() + comment |
|
) |
|
self.log_dir = log_dir |
|
self.purge_step = purge_step |
|
self.max_queue = max_queue |
|
self.flush_secs = flush_secs |
|
self.filename_suffix = filename_suffix |
|
|
|
|
|
|
|
self.file_writer = self.all_writers = None |
|
self._get_file_writer() |
|
|
|
|
|
v = 1e-12 |
|
buckets = [] |
|
neg_buckets = [] |
|
while v < 1e20: |
|
buckets.append(v) |
|
neg_buckets.append(-v) |
|
v *= 1.1 |
|
self.default_bins = neg_buckets[::-1] + [0] + buckets |
|
|
|
def _get_file_writer(self): |
|
"""Return the default FileWriter instance. Recreates it if closed.""" |
|
if self.all_writers is None or self.file_writer is None: |
|
self.file_writer = FileWriter( |
|
self.log_dir, self.max_queue, self.flush_secs, self.filename_suffix |
|
) |
|
self.all_writers = {self.file_writer.get_logdir(): self.file_writer} |
|
if self.purge_step is not None: |
|
most_recent_step = self.purge_step |
|
self.file_writer.add_event( |
|
Event(step=most_recent_step, file_version="brain.Event:2") |
|
) |
|
self.file_writer.add_event( |
|
Event( |
|
step=most_recent_step, |
|
session_log=SessionLog(status=SessionLog.START), |
|
) |
|
) |
|
self.purge_step = None |
|
return self.file_writer |
|
|
|
def get_logdir(self): |
|
"""Return the directory where event files will be written.""" |
|
return self.log_dir |
|
|
|
def add_hparams( |
|
self, |
|
hparam_dict, |
|
metric_dict, |
|
hparam_domain_discrete=None, |
|
run_name=None, |
|
global_step=None, |
|
): |
|
"""Add a set of hyperparameters to be compared in TensorBoard. |
|
|
|
Args: |
|
hparam_dict (dict): Each key-value pair in the dictionary is the |
|
name of the hyper parameter and it's corresponding value. |
|
The type of the value can be one of `bool`, `string`, `float`, |
|
`int`, or `None`. |
|
metric_dict (dict): Each key-value pair in the dictionary is the |
|
name of the metric and it's corresponding value. Note that the key used |
|
here should be unique in the tensorboard record. Otherwise the value |
|
you added by ``add_scalar`` will be displayed in hparam plugin. In most |
|
cases, this is unwanted. |
|
hparam_domain_discrete: (Optional[Dict[str, List[Any]]]) A dictionary that |
|
contains names of the hyperparameters and all discrete values they can hold |
|
run_name (str): Name of the run, to be included as part of the logdir. |
|
If unspecified, will use current timestamp. |
|
global_step (int): Global step value to record |
|
|
|
Examples:: |
|
|
|
from torch.utils.tensorboard import SummaryWriter |
|
with SummaryWriter() as w: |
|
for i in range(5): |
|
w.add_hparams({'lr': 0.1*i, 'bsize': i}, |
|
{'hparam/accuracy': 10*i, 'hparam/loss': 10*i}) |
|
|
|
Expected result: |
|
|
|
.. image:: _static/img/tensorboard/add_hparam.png |
|
:scale: 50 % |
|
|
|
""" |
|
torch._C._log_api_usage_once("tensorboard.logging.add_hparams") |
|
if type(hparam_dict) is not dict or type(metric_dict) is not dict: |
|
raise TypeError("hparam_dict and metric_dict should be dictionary.") |
|
exp, ssi, sei = hparams(hparam_dict, metric_dict, hparam_domain_discrete) |
|
|
|
if not run_name: |
|
run_name = str(time.time()) |
|
logdir = os.path.join(self._get_file_writer().get_logdir(), run_name) |
|
with SummaryWriter(log_dir=logdir) as w_hp: |
|
w_hp.file_writer.add_summary(exp, global_step) |
|
w_hp.file_writer.add_summary(ssi, global_step) |
|
w_hp.file_writer.add_summary(sei, global_step) |
|
for k, v in metric_dict.items(): |
|
w_hp.add_scalar(k, v, global_step) |
|
|
|
def add_scalar( |
|
self, |
|
tag, |
|
scalar_value, |
|
global_step=None, |
|
walltime=None, |
|
new_style=False, |
|
double_precision=False, |
|
): |
|
"""Add scalar data to summary. |
|
|
|
Args: |
|
tag (str): Data identifier |
|
scalar_value (float or string/blobname): Value to save |
|
global_step (int): Global step value to record |
|
walltime (float): Optional override default walltime (time.time()) |
|
with seconds after epoch of event |
|
new_style (boolean): Whether to use new style (tensor field) or old |
|
style (simple_value field). New style could lead to faster data loading. |
|
Examples:: |
|
|
|
from torch.utils.tensorboard import SummaryWriter |
|
writer = SummaryWriter() |
|
x = range(100) |
|
for i in x: |
|
writer.add_scalar('y=2x', i * 2, i) |
|
writer.close() |
|
|
|
Expected result: |
|
|
|
.. image:: _static/img/tensorboard/add_scalar.png |
|
:scale: 50 % |
|
|
|
""" |
|
torch._C._log_api_usage_once("tensorboard.logging.add_scalar") |
|
|
|
summary = scalar( |
|
tag, scalar_value, new_style=new_style, double_precision=double_precision |
|
) |
|
self._get_file_writer().add_summary(summary, global_step, walltime) |
|
|
|
def add_scalars(self, main_tag, tag_scalar_dict, global_step=None, walltime=None): |
|
"""Add many scalar data to summary. |
|
|
|
Args: |
|
main_tag (str): The parent name for the tags |
|
tag_scalar_dict (dict): Key-value pair storing the tag and corresponding values |
|
global_step (int): Global step value to record |
|
walltime (float): Optional override default walltime (time.time()) |
|
seconds after epoch of event |
|
|
|
Examples:: |
|
|
|
from torch.utils.tensorboard import SummaryWriter |
|
writer = SummaryWriter() |
|
r = 5 |
|
for i in range(100): |
|
writer.add_scalars('run_14h', {'xsinx':i*np.sin(i/r), |
|
'xcosx':i*np.cos(i/r), |
|
'tanx': np.tan(i/r)}, i) |
|
writer.close() |
|
# This call adds three values to the same scalar plot with the tag |
|
# 'run_14h' in TensorBoard's scalar section. |
|
|
|
Expected result: |
|
|
|
.. image:: _static/img/tensorboard/add_scalars.png |
|
:scale: 50 % |
|
|
|
""" |
|
torch._C._log_api_usage_once("tensorboard.logging.add_scalars") |
|
walltime = time.time() if walltime is None else walltime |
|
fw_logdir = self._get_file_writer().get_logdir() |
|
for tag, scalar_value in tag_scalar_dict.items(): |
|
fw_tag = fw_logdir + "/" + main_tag.replace("/", "_") + "_" + tag |
|
assert self.all_writers is not None |
|
if fw_tag in self.all_writers.keys(): |
|
fw = self.all_writers[fw_tag] |
|
else: |
|
fw = FileWriter( |
|
fw_tag, self.max_queue, self.flush_secs, self.filename_suffix |
|
) |
|
self.all_writers[fw_tag] = fw |
|
fw.add_summary(scalar(main_tag, scalar_value), global_step, walltime) |
|
|
|
def add_tensor( |
|
self, |
|
tag, |
|
tensor, |
|
global_step=None, |
|
walltime=None, |
|
): |
|
"""Add tensor data to summary. |
|
|
|
Args: |
|
tag (str): Data identifier |
|
tensor (torch.Tensor): tensor to save |
|
global_step (int): Global step value to record |
|
Examples:: |
|
|
|
from torch.utils.tensorboard import SummaryWriter |
|
writer = SummaryWriter() |
|
x = torch.tensor([1,2,3]) |
|
writer.add_scalar('x', x) |
|
writer.close() |
|
|
|
Expected result: |
|
Summary::tensor::float_val [1,2,3] |
|
::tensor::shape [3] |
|
::tag 'x' |
|
|
|
""" |
|
torch._C._log_api_usage_once("tensorboard.logging.add_tensor") |
|
|
|
summary = tensor_proto(tag, tensor) |
|
self._get_file_writer().add_summary(summary, global_step, walltime) |
|
|
|
def add_histogram( |
|
self, |
|
tag, |
|
values, |
|
global_step=None, |
|
bins="tensorflow", |
|
walltime=None, |
|
max_bins=None, |
|
): |
|
"""Add histogram to summary. |
|
|
|
Args: |
|
tag (str): Data identifier |
|
values (torch.Tensor, numpy.ndarray, or string/blobname): Values to build histogram |
|
global_step (int): Global step value to record |
|
bins (str): One of {'tensorflow','auto', 'fd', ...}. This determines how the bins are made. You can find |
|
other options in: https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html |
|
walltime (float): Optional override default walltime (time.time()) |
|
seconds after epoch of event |
|
|
|
Examples:: |
|
|
|
from torch.utils.tensorboard import SummaryWriter |
|
import numpy as np |
|
writer = SummaryWriter() |
|
for i in range(10): |
|
x = np.random.random(1000) |
|
writer.add_histogram('distribution centers', x + i, i) |
|
writer.close() |
|
|
|
Expected result: |
|
|
|
.. image:: _static/img/tensorboard/add_histogram.png |
|
:scale: 50 % |
|
|
|
""" |
|
torch._C._log_api_usage_once("tensorboard.logging.add_histogram") |
|
if isinstance(bins, str) and bins == "tensorflow": |
|
bins = self.default_bins |
|
self._get_file_writer().add_summary( |
|
histogram(tag, values, bins, max_bins=max_bins), global_step, walltime |
|
) |
|
|
|
def add_histogram_raw( |
|
self, |
|
tag, |
|
min, |
|
max, |
|
num, |
|
sum, |
|
sum_squares, |
|
bucket_limits, |
|
bucket_counts, |
|
global_step=None, |
|
walltime=None, |
|
): |
|
"""Add histogram with raw data. |
|
|
|
Args: |
|
tag (str): Data identifier |
|
min (float or int): Min value |
|
max (float or int): Max value |
|
num (int): Number of values |
|
sum (float or int): Sum of all values |
|
sum_squares (float or int): Sum of squares for all values |
|
bucket_limits (torch.Tensor, numpy.ndarray): Upper value per bucket. |
|
The number of elements of it should be the same as `bucket_counts`. |
|
bucket_counts (torch.Tensor, numpy.ndarray): Number of values per bucket |
|
global_step (int): Global step value to record |
|
walltime (float): Optional override default walltime (time.time()) |
|
seconds after epoch of event |
|
see: https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/histogram/README.md |
|
|
|
Examples:: |
|
|
|
from torch.utils.tensorboard import SummaryWriter |
|
import numpy as np |
|
writer = SummaryWriter() |
|
dummy_data = [] |
|
for idx, value in enumerate(range(50)): |
|
dummy_data += [idx + 0.001] * value |
|
|
|
bins = list(range(50+2)) |
|
bins = np.array(bins) |
|
values = np.array(dummy_data).astype(float).reshape(-1) |
|
counts, limits = np.histogram(values, bins=bins) |
|
sum_sq = values.dot(values) |
|
writer.add_histogram_raw( |
|
tag='histogram_with_raw_data', |
|
min=values.min(), |
|
max=values.max(), |
|
num=len(values), |
|
sum=values.sum(), |
|
sum_squares=sum_sq, |
|
bucket_limits=limits[1:].tolist(), |
|
bucket_counts=counts.tolist(), |
|
global_step=0) |
|
writer.close() |
|
|
|
Expected result: |
|
|
|
.. image:: _static/img/tensorboard/add_histogram_raw.png |
|
:scale: 50 % |
|
|
|
""" |
|
torch._C._log_api_usage_once("tensorboard.logging.add_histogram_raw") |
|
if len(bucket_limits) != len(bucket_counts): |
|
raise ValueError( |
|
"len(bucket_limits) != len(bucket_counts), see the document." |
|
) |
|
self._get_file_writer().add_summary( |
|
histogram_raw( |
|
tag, min, max, num, sum, sum_squares, bucket_limits, bucket_counts |
|
), |
|
global_step, |
|
walltime, |
|
) |
|
|
|
def add_image( |
|
self, tag, img_tensor, global_step=None, walltime=None, dataformats="CHW" |
|
): |
|
"""Add image data to summary. |
|
|
|
Note that this requires the ``pillow`` package. |
|
|
|
Args: |
|
tag (str): Data identifier |
|
img_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data |
|
global_step (int): Global step value to record |
|
walltime (float): Optional override default walltime (time.time()) |
|
seconds after epoch of event |
|
dataformats (str): Image data format specification of the form |
|
CHW, HWC, HW, WH, etc. |
|
Shape: |
|
img_tensor: Default is :math:`(3, H, W)`. You can use ``torchvision.utils.make_grid()`` to |
|
convert a batch of tensor into 3xHxW format or call ``add_images`` and let us do the job. |
|
Tensor with :math:`(1, H, W)`, :math:`(H, W)`, :math:`(H, W, 3)` is also suitable as long as |
|
corresponding ``dataformats`` argument is passed, e.g. ``CHW``, ``HWC``, ``HW``. |
|
|
|
Examples:: |
|
|
|
from torch.utils.tensorboard import SummaryWriter |
|
import numpy as np |
|
img = np.zeros((3, 100, 100)) |
|
img[0] = np.arange(0, 10000).reshape(100, 100) / 10000 |
|
img[1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000 |
|
|
|
img_HWC = np.zeros((100, 100, 3)) |
|
img_HWC[:, :, 0] = np.arange(0, 10000).reshape(100, 100) / 10000 |
|
img_HWC[:, :, 1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000 |
|
|
|
writer = SummaryWriter() |
|
writer.add_image('my_image', img, 0) |
|
|
|
# If you have non-default dimension setting, set the dataformats argument. |
|
writer.add_image('my_image_HWC', img_HWC, 0, dataformats='HWC') |
|
writer.close() |
|
|
|
Expected result: |
|
|
|
.. image:: _static/img/tensorboard/add_image.png |
|
:scale: 50 % |
|
|
|
""" |
|
torch._C._log_api_usage_once("tensorboard.logging.add_image") |
|
self._get_file_writer().add_summary( |
|
image(tag, img_tensor, dataformats=dataformats), global_step, walltime |
|
) |
|
|
|
def add_images( |
|
self, tag, img_tensor, global_step=None, walltime=None, dataformats="NCHW" |
|
): |
|
"""Add batched image data to summary. |
|
|
|
Note that this requires the ``pillow`` package. |
|
|
|
Args: |
|
tag (str): Data identifier |
|
img_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data |
|
global_step (int): Global step value to record |
|
walltime (float): Optional override default walltime (time.time()) |
|
seconds after epoch of event |
|
dataformats (str): Image data format specification of the form |
|
NCHW, NHWC, CHW, HWC, HW, WH, etc. |
|
Shape: |
|
img_tensor: Default is :math:`(N, 3, H, W)`. If ``dataformats`` is specified, other shape will be |
|
accepted. e.g. NCHW or NHWC. |
|
|
|
Examples:: |
|
|
|
from torch.utils.tensorboard import SummaryWriter |
|
import numpy as np |
|
|
|
img_batch = np.zeros((16, 3, 100, 100)) |
|
for i in range(16): |
|
img_batch[i, 0] = np.arange(0, 10000).reshape(100, 100) / 10000 / 16 * i |
|
img_batch[i, 1] = (1 - np.arange(0, 10000).reshape(100, 100) / 10000) / 16 * i |
|
|
|
writer = SummaryWriter() |
|
writer.add_images('my_image_batch', img_batch, 0) |
|
writer.close() |
|
|
|
Expected result: |
|
|
|
.. image:: _static/img/tensorboard/add_images.png |
|
:scale: 30 % |
|
|
|
""" |
|
torch._C._log_api_usage_once("tensorboard.logging.add_images") |
|
self._get_file_writer().add_summary( |
|
image(tag, img_tensor, dataformats=dataformats), global_step, walltime |
|
) |
|
|
|
def add_image_with_boxes( |
|
self, |
|
tag, |
|
img_tensor, |
|
box_tensor, |
|
global_step=None, |
|
walltime=None, |
|
rescale=1, |
|
dataformats="CHW", |
|
labels=None, |
|
): |
|
"""Add image and draw bounding boxes on the image. |
|
|
|
Args: |
|
tag (str): Data identifier |
|
img_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data |
|
box_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Box data (for detected objects) |
|
box should be represented as [x1, y1, x2, y2]. |
|
global_step (int): Global step value to record |
|
walltime (float): Optional override default walltime (time.time()) |
|
seconds after epoch of event |
|
rescale (float): Optional scale override |
|
dataformats (str): Image data format specification of the form |
|
NCHW, NHWC, CHW, HWC, HW, WH, etc. |
|
labels (list of string): The label to be shown for each bounding box. |
|
Shape: |
|
img_tensor: Default is :math:`(3, H, W)`. It can be specified with ``dataformats`` argument. |
|
e.g. CHW or HWC |
|
|
|
box_tensor: (torch.Tensor, numpy.ndarray, or string/blobname): NX4, where N is the number of |
|
boxes and each 4 elements in a row represents (xmin, ymin, xmax, ymax). |
|
""" |
|
torch._C._log_api_usage_once("tensorboard.logging.add_image_with_boxes") |
|
if labels is not None: |
|
if isinstance(labels, str): |
|
labels = [labels] |
|
if len(labels) != box_tensor.shape[0]: |
|
labels = None |
|
self._get_file_writer().add_summary( |
|
image_boxes( |
|
tag, |
|
img_tensor, |
|
box_tensor, |
|
rescale=rescale, |
|
dataformats=dataformats, |
|
labels=labels, |
|
), |
|
global_step, |
|
walltime, |
|
) |
|
|
|
def add_figure( |
|
self, |
|
tag: str, |
|
figure: Union["Figure", List["Figure"]], |
|
global_step: Optional[int] = None, |
|
close: bool = True, |
|
walltime: Optional[float] = None, |
|
) -> None: |
|
"""Render matplotlib figure into an image and add it to summary. |
|
|
|
Note that this requires the ``matplotlib`` package. |
|
|
|
Args: |
|
tag: Data identifier |
|
figure: Figure or a list of figures |
|
global_step: Global step value to record |
|
close: Flag to automatically close the figure |
|
walltime: Optional override default walltime (time.time()) |
|
seconds after epoch of event |
|
""" |
|
torch._C._log_api_usage_once("tensorboard.logging.add_figure") |
|
if isinstance(figure, list): |
|
self.add_image( |
|
tag, |
|
figure_to_image(figure, close), |
|
global_step, |
|
walltime, |
|
dataformats="NCHW", |
|
) |
|
else: |
|
self.add_image( |
|
tag, |
|
figure_to_image(figure, close), |
|
global_step, |
|
walltime, |
|
dataformats="CHW", |
|
) |
|
|
|
def add_video(self, tag, vid_tensor, global_step=None, fps=4, walltime=None): |
|
"""Add video data to summary. |
|
|
|
Note that this requires the ``moviepy`` package. |
|
|
|
Args: |
|
tag (str): Data identifier |
|
vid_tensor (torch.Tensor): Video data |
|
global_step (int): Global step value to record |
|
fps (float or int): Frames per second |
|
walltime (float): Optional override default walltime (time.time()) |
|
seconds after epoch of event |
|
Shape: |
|
vid_tensor: :math:`(N, T, C, H, W)`. The values should lie in [0, 255] for type `uint8` or [0, 1] for type `float`. |
|
""" |
|
torch._C._log_api_usage_once("tensorboard.logging.add_video") |
|
self._get_file_writer().add_summary( |
|
video(tag, vid_tensor, fps), global_step, walltime |
|
) |
|
|
|
def add_audio( |
|
self, tag, snd_tensor, global_step=None, sample_rate=44100, walltime=None |
|
): |
|
"""Add audio data to summary. |
|
|
|
Args: |
|
tag (str): Data identifier |
|
snd_tensor (torch.Tensor): Sound data |
|
global_step (int): Global step value to record |
|
sample_rate (int): sample rate in Hz |
|
walltime (float): Optional override default walltime (time.time()) |
|
seconds after epoch of event |
|
Shape: |
|
snd_tensor: :math:`(1, L)`. The values should lie between [-1, 1]. |
|
""" |
|
torch._C._log_api_usage_once("tensorboard.logging.add_audio") |
|
self._get_file_writer().add_summary( |
|
audio(tag, snd_tensor, sample_rate=sample_rate), global_step, walltime |
|
) |
|
|
|
def add_text(self, tag, text_string, global_step=None, walltime=None): |
|
"""Add text data to summary. |
|
|
|
Args: |
|
tag (str): Data identifier |
|
text_string (str): String to save |
|
global_step (int): Global step value to record |
|
walltime (float): Optional override default walltime (time.time()) |
|
seconds after epoch of event |
|
Examples:: |
|
|
|
writer.add_text('lstm', 'This is an lstm', 0) |
|
writer.add_text('rnn', 'This is an rnn', 10) |
|
""" |
|
torch._C._log_api_usage_once("tensorboard.logging.add_text") |
|
self._get_file_writer().add_summary( |
|
text(tag, text_string), global_step, walltime |
|
) |
|
|
|
def add_onnx_graph(self, prototxt): |
|
torch._C._log_api_usage_once("tensorboard.logging.add_onnx_graph") |
|
self._get_file_writer().add_onnx_graph(load_onnx_graph(prototxt)) |
|
|
|
def add_graph( |
|
self, model, input_to_model=None, verbose=False, use_strict_trace=True |
|
): |
|
"""Add graph data to summary. |
|
|
|
Args: |
|
model (torch.nn.Module): Model to draw. |
|
input_to_model (torch.Tensor or list of torch.Tensor): A variable or a tuple of |
|
variables to be fed. |
|
verbose (bool): Whether to print graph structure in console. |
|
use_strict_trace (bool): Whether to pass keyword argument `strict` to |
|
`torch.jit.trace`. Pass False when you want the tracer to |
|
record your mutable container types (list, dict) |
|
""" |
|
torch._C._log_api_usage_once("tensorboard.logging.add_graph") |
|
|
|
self._get_file_writer().add_graph( |
|
graph(model, input_to_model, verbose, use_strict_trace) |
|
) |
|
|
|
@staticmethod |
|
def _encode(rawstr): |
|
|
|
retval = rawstr |
|
retval = retval.replace("%", f"%{ord('%'):02x}") |
|
retval = retval.replace("/", f"%{ord('/'):02x}") |
|
retval = retval.replace("\\", "%%%02x" % (ord("\\"))) |
|
return retval |
|
|
|
def add_embedding( |
|
self, |
|
mat, |
|
metadata=None, |
|
label_img=None, |
|
global_step=None, |
|
tag="default", |
|
metadata_header=None, |
|
): |
|
"""Add embedding projector data to summary. |
|
|
|
Args: |
|
mat (torch.Tensor or numpy.ndarray): A matrix which each row is the feature vector of the data point |
|
metadata (list): A list of labels, each element will be converted to string |
|
label_img (torch.Tensor): Images correspond to each data point |
|
global_step (int): Global step value to record |
|
tag (str): Name for the embedding |
|
metadata_header (list): A list of headers for multi-column metadata. If given, each metadata must be |
|
a list with values corresponding to headers. |
|
Shape: |
|
mat: :math:`(N, D)`, where N is number of data and D is feature dimension |
|
|
|
label_img: :math:`(N, C, H, W)` |
|
|
|
Examples:: |
|
|
|
import keyword |
|
import torch |
|
meta = [] |
|
while len(meta)<100: |
|
meta = meta+keyword.kwlist # get some strings |
|
meta = meta[:100] |
|
|
|
for i, v in enumerate(meta): |
|
meta[i] = v+str(i) |
|
|
|
label_img = torch.rand(100, 3, 10, 32) |
|
for i in range(100): |
|
label_img[i]*=i/100.0 |
|
|
|
writer.add_embedding(torch.randn(100, 5), metadata=meta, label_img=label_img) |
|
writer.add_embedding(torch.randn(100, 5), label_img=label_img) |
|
writer.add_embedding(torch.randn(100, 5), metadata=meta) |
|
|
|
.. note:: |
|
Categorical (i.e. non-numeric) metadata cannot have more than 50 unique values if they are to be used for |
|
coloring in the embedding projector. |
|
|
|
""" |
|
torch._C._log_api_usage_once("tensorboard.logging.add_embedding") |
|
mat = make_np(mat) |
|
if global_step is None: |
|
global_step = 0 |
|
|
|
|
|
|
|
|
|
subdir = f"{str(global_step).zfill(5)}/{self._encode(tag)}" |
|
save_path = os.path.join(self._get_file_writer().get_logdir(), subdir) |
|
|
|
fs = tf.io.gfile |
|
if fs.exists(save_path): |
|
if fs.isdir(save_path): |
|
print( |
|
"warning: Embedding dir exists, did you set global_step for add_embedding()?" |
|
) |
|
else: |
|
raise NotADirectoryError( |
|
f"Path: `{save_path}` exists, but is a file. Cannot proceed." |
|
) |
|
else: |
|
fs.makedirs(save_path) |
|
|
|
if metadata is not None: |
|
assert mat.shape[0] == len( |
|
metadata |
|
), "#labels should equal with #data points" |
|
make_tsv(metadata, save_path, metadata_header=metadata_header) |
|
|
|
if label_img is not None: |
|
assert ( |
|
mat.shape[0] == label_img.shape[0] |
|
), "#images should equal with #data points" |
|
make_sprite(label_img, save_path) |
|
|
|
assert ( |
|
mat.ndim == 2 |
|
), "mat should be 2D, where mat.size(0) is the number of data points" |
|
make_mat(mat, save_path) |
|
|
|
|
|
|
|
|
|
if not hasattr(self, "_projector_config"): |
|
self._projector_config = ProjectorConfig() |
|
embedding_info = get_embedding_info( |
|
metadata, label_img, subdir, global_step, tag |
|
) |
|
self._projector_config.embeddings.extend([embedding_info]) |
|
|
|
from google.protobuf import text_format |
|
|
|
config_pbtxt = text_format.MessageToString(self._projector_config) |
|
write_pbtxt(self._get_file_writer().get_logdir(), config_pbtxt) |
|
|
|
def add_pr_curve( |
|
self, |
|
tag, |
|
labels, |
|
predictions, |
|
global_step=None, |
|
num_thresholds=127, |
|
weights=None, |
|
walltime=None, |
|
): |
|
"""Add precision recall curve. |
|
|
|
Plotting a precision-recall curve lets you understand your model's |
|
performance under different threshold settings. With this function, |
|
you provide the ground truth labeling (T/F) and prediction confidence |
|
(usually the output of your model) for each target. The TensorBoard UI |
|
will let you choose the threshold interactively. |
|
|
|
Args: |
|
tag (str): Data identifier |
|
labels (torch.Tensor, numpy.ndarray, or string/blobname): |
|
Ground truth data. Binary label for each element. |
|
predictions (torch.Tensor, numpy.ndarray, or string/blobname): |
|
The probability that an element be classified as true. |
|
Value should be in [0, 1] |
|
global_step (int): Global step value to record |
|
num_thresholds (int): Number of thresholds used to draw the curve. |
|
walltime (float): Optional override default walltime (time.time()) |
|
seconds after epoch of event |
|
|
|
Examples:: |
|
|
|
from torch.utils.tensorboard import SummaryWriter |
|
import numpy as np |
|
labels = np.random.randint(2, size=100) # binary label |
|
predictions = np.random.rand(100) |
|
writer = SummaryWriter() |
|
writer.add_pr_curve('pr_curve', labels, predictions, 0) |
|
writer.close() |
|
|
|
""" |
|
torch._C._log_api_usage_once("tensorboard.logging.add_pr_curve") |
|
labels, predictions = make_np(labels), make_np(predictions) |
|
self._get_file_writer().add_summary( |
|
pr_curve(tag, labels, predictions, num_thresholds, weights), |
|
global_step, |
|
walltime, |
|
) |
|
|
|
def add_pr_curve_raw( |
|
self, |
|
tag, |
|
true_positive_counts, |
|
false_positive_counts, |
|
true_negative_counts, |
|
false_negative_counts, |
|
precision, |
|
recall, |
|
global_step=None, |
|
num_thresholds=127, |
|
weights=None, |
|
walltime=None, |
|
): |
|
"""Add precision recall curve with raw data. |
|
|
|
Args: |
|
tag (str): Data identifier |
|
true_positive_counts (torch.Tensor, numpy.ndarray, or string/blobname): true positive counts |
|
false_positive_counts (torch.Tensor, numpy.ndarray, or string/blobname): false positive counts |
|
true_negative_counts (torch.Tensor, numpy.ndarray, or string/blobname): true negative counts |
|
false_negative_counts (torch.Tensor, numpy.ndarray, or string/blobname): false negative counts |
|
precision (torch.Tensor, numpy.ndarray, or string/blobname): precision |
|
recall (torch.Tensor, numpy.ndarray, or string/blobname): recall |
|
global_step (int): Global step value to record |
|
num_thresholds (int): Number of thresholds used to draw the curve. |
|
walltime (float): Optional override default walltime (time.time()) |
|
seconds after epoch of event |
|
see: https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/pr_curve/README.md |
|
""" |
|
torch._C._log_api_usage_once("tensorboard.logging.add_pr_curve_raw") |
|
self._get_file_writer().add_summary( |
|
pr_curve_raw( |
|
tag, |
|
true_positive_counts, |
|
false_positive_counts, |
|
true_negative_counts, |
|
false_negative_counts, |
|
precision, |
|
recall, |
|
num_thresholds, |
|
weights, |
|
), |
|
global_step, |
|
walltime, |
|
) |
|
|
|
def add_custom_scalars_multilinechart( |
|
self, tags, category="default", title="untitled" |
|
): |
|
"""Shorthand for creating multilinechart. Similar to ``add_custom_scalars()``, but the only necessary argument is *tags*. |
|
|
|
Args: |
|
tags (list): list of tags that have been used in ``add_scalar()`` |
|
|
|
Examples:: |
|
|
|
writer.add_custom_scalars_multilinechart(['twse/0050', 'twse/2330']) |
|
""" |
|
torch._C._log_api_usage_once( |
|
"tensorboard.logging.add_custom_scalars_multilinechart" |
|
) |
|
layout = {category: {title: ["Multiline", tags]}} |
|
self._get_file_writer().add_summary(custom_scalars(layout)) |
|
|
|
def add_custom_scalars_marginchart( |
|
self, tags, category="default", title="untitled" |
|
): |
|
"""Shorthand for creating marginchart. |
|
|
|
Similar to ``add_custom_scalars()``, but the only necessary argument is *tags*, |
|
which should have exactly 3 elements. |
|
|
|
Args: |
|
tags (list): list of tags that have been used in ``add_scalar()`` |
|
|
|
Examples:: |
|
|
|
writer.add_custom_scalars_marginchart(['twse/0050', 'twse/2330', 'twse/2006']) |
|
""" |
|
torch._C._log_api_usage_once( |
|
"tensorboard.logging.add_custom_scalars_marginchart" |
|
) |
|
assert len(tags) == 3 |
|
layout = {category: {title: ["Margin", tags]}} |
|
self._get_file_writer().add_summary(custom_scalars(layout)) |
|
|
|
def add_custom_scalars(self, layout): |
|
"""Create special chart by collecting charts tags in 'scalars'. |
|
|
|
NOTE: This function can only be called once for each SummaryWriter() object. |
|
|
|
Because it only provides metadata to tensorboard, the function can be called before or after the training loop. |
|
|
|
Args: |
|
layout (dict): {categoryName: *charts*}, where *charts* is also a dictionary |
|
{chartName: *ListOfProperties*}. The first element in *ListOfProperties* is the chart's type |
|
(one of **Multiline** or **Margin**) and the second element should be a list containing the tags |
|
you have used in add_scalar function, which will be collected into the new chart. |
|
|
|
Examples:: |
|
|
|
layout = {'Taiwan':{'twse':['Multiline',['twse/0050', 'twse/2330']]}, |
|
'USA':{ 'dow':['Margin', ['dow/aaa', 'dow/bbb', 'dow/ccc']], |
|
'nasdaq':['Margin', ['nasdaq/aaa', 'nasdaq/bbb', 'nasdaq/ccc']]}} |
|
|
|
writer.add_custom_scalars(layout) |
|
""" |
|
torch._C._log_api_usage_once("tensorboard.logging.add_custom_scalars") |
|
self._get_file_writer().add_summary(custom_scalars(layout)) |
|
|
|
def add_mesh( |
|
self, |
|
tag, |
|
vertices, |
|
colors=None, |
|
faces=None, |
|
config_dict=None, |
|
global_step=None, |
|
walltime=None, |
|
): |
|
"""Add meshes or 3D point clouds to TensorBoard. |
|
|
|
The visualization is based on Three.js, |
|
so it allows users to interact with the rendered object. Besides the basic definitions |
|
such as vertices, faces, users can further provide camera parameter, lighting condition, etc. |
|
Please check https://threejs.org/docs/index.html#manual/en/introduction/Creating-a-scene for |
|
advanced usage. |
|
|
|
Args: |
|
tag (str): Data identifier |
|
vertices (torch.Tensor): List of the 3D coordinates of vertices. |
|
colors (torch.Tensor): Colors for each vertex |
|
faces (torch.Tensor): Indices of vertices within each triangle. (Optional) |
|
config_dict: Dictionary with ThreeJS classes names and configuration. |
|
global_step (int): Global step value to record |
|
walltime (float): Optional override default walltime (time.time()) |
|
seconds after epoch of event |
|
|
|
Shape: |
|
vertices: :math:`(B, N, 3)`. (batch, number_of_vertices, channels) |
|
|
|
colors: :math:`(B, N, 3)`. The values should lie in [0, 255] for type `uint8` or [0, 1] for type `float`. |
|
|
|
faces: :math:`(B, N, 3)`. The values should lie in [0, number_of_vertices] for type `uint8`. |
|
|
|
Examples:: |
|
|
|
from torch.utils.tensorboard import SummaryWriter |
|
vertices_tensor = torch.as_tensor([ |
|
[1, 1, 1], |
|
[-1, -1, 1], |
|
[1, -1, -1], |
|
[-1, 1, -1], |
|
], dtype=torch.float).unsqueeze(0) |
|
colors_tensor = torch.as_tensor([ |
|
[255, 0, 0], |
|
[0, 255, 0], |
|
[0, 0, 255], |
|
[255, 0, 255], |
|
], dtype=torch.int).unsqueeze(0) |
|
faces_tensor = torch.as_tensor([ |
|
[0, 2, 3], |
|
[0, 3, 1], |
|
[0, 1, 2], |
|
[1, 3, 2], |
|
], dtype=torch.int).unsqueeze(0) |
|
|
|
writer = SummaryWriter() |
|
writer.add_mesh('my_mesh', vertices=vertices_tensor, colors=colors_tensor, faces=faces_tensor) |
|
|
|
writer.close() |
|
""" |
|
torch._C._log_api_usage_once("tensorboard.logging.add_mesh") |
|
self._get_file_writer().add_summary( |
|
mesh(tag, vertices, colors, faces, config_dict), global_step, walltime |
|
) |
|
|
|
def flush(self): |
|
"""Flushes the event file to disk. |
|
|
|
Call this method to make sure that all pending events have been written to |
|
disk. |
|
""" |
|
if self.all_writers is None: |
|
return |
|
for writer in self.all_writers.values(): |
|
writer.flush() |
|
|
|
def close(self): |
|
if self.all_writers is None: |
|
return |
|
for writer in self.all_writers.values(): |
|
writer.flush() |
|
writer.close() |
|
self.file_writer = self.all_writers = None |
|
|
|
def __enter__(self): |
|
return self |
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb): |
|
self.close() |
|
|