Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/clvp
/configuration_clvp.py
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""CLVP model configuration""" | |
import os | |
from typing import TYPE_CHECKING, Union | |
if TYPE_CHECKING: | |
pass | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class ClvpEncoderConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`ClvpEncoder`]. It is used to instantiate a CLVP | |
text or CLVP speech encoder according to the specified arguments. Instantiating a configuration with the defaults | |
will yield a similar configuration to that of the encoder of the CLVP | |
[susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 256): | |
Vocabulary size of the CLVP Encoder model. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
intermediate_size (`int`, *optional*, defaults to 1536): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
projection_dim (`int`, *optional*, defaults to 768): | |
Dimensionality of the projection vector. | |
num_hidden_layers (`int`, *optional*, defaults to 20): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-05): | |
The epsilon used by the layer normalization layers. | |
attention_dropout (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
dropout (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the feed-forward layers in [`ClvpEncoderMLP`]. | |
use_rotary_embedding (`bool`, *optional*, defaults to `True`): | |
Whether to use rotary_embedding or not. | |
use_attention_bias (`bool`, *optional*, defaults to `False`): | |
Whether to use bias in Query, Key and Value layers during self attention. | |
summary_type (`str`, *optional*, defaults to `"mean"`): | |
What strategy to use to get pooler_output from the last_hidden_state. `"last"`, `"first"`, `"mean"` and | |
`"cls_index"` are supported. | |
initializer_factor (`float`, *optional*, defaults to 1.0): | |
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization | |
testing). | |
bos_token_id (`int`, *optional*, defaults to 255): | |
Beginning of sequence token id. | |
eos_token_id (`int`, *optional*, defaults to 0): | |
End of sequence token id. | |
Example: | |
```python | |
>>> from transformers import ClvpEncoderConfig, ClvpEncoder | |
>>> # Initializing a ClvpEncoderConfig with susnato/clvp_dev style configuration | |
>>> encoder_configuration = ClvpEncoderConfig() | |
>>> # Initializing a ClvpEncoder (with random weights) from the susnato/clvp_dev style configuration | |
>>> model = ClvpEncoder(encoder_configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "clvp_encoder" | |
def __init__( | |
self, | |
vocab_size=256, | |
hidden_size=768, | |
intermediate_size=1536, | |
projection_dim=768, | |
num_hidden_layers=20, | |
num_attention_heads=12, | |
hidden_act="gelu", | |
layer_norm_eps=1e-5, | |
attention_dropout=0.1, | |
dropout=0.1, | |
use_rotary_embedding=True, | |
use_attention_bias=False, | |
summary_type="mean", | |
initializer_factor=1.0, | |
bos_token_id=255, | |
eos_token_id=0, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.projection_dim = projection_dim | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
self.initializer_factor = initializer_factor | |
self.attention_dropout = attention_dropout | |
self.dropout = dropout | |
self.use_rotary_embedding = use_rotary_embedding | |
self.use_attention_bias = use_attention_bias | |
self.summary_type = summary_type | |
self.bos_token_id = bos_token_id | |
self.eos_token_id = eos_token_id | |
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) | |
def from_pretrained( | |
cls, pretrained_model_name_or_path: Union[str, os.PathLike], config_type: str = "text_config", **kwargs | |
) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# make sure to have the config_type be either "text_config" or "speech_config" | |
# this is to make sure that we can load only text or speech configs from the nested ClvpConfig. | |
if config_type not in ["text_config", "speech_config"]: | |
raise ValueError( | |
f"We can only load either 'text_config' or 'speech_config' but you are trying to load" f"{config_type}" | |
) | |
# get the text config dict if we are loading from ClvpConfig | |
if config_dict.get("model_type") == "clvp": | |
config_dict = config_dict[config_type] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class ClvpDecoderConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`ClvpDecoder`]. It is used to instantiate a CLVP | |
Decoder Model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the Decoder part of the CLVP | |
[susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
The architecture is similar to GPT2. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 8194): | |
Vocabulary size of the model. | |
max_position_embeddings (`int`, *optional*, defaults to 608): | |
The maximum sequence length of mel tokens that this model might ever be used with. Similar to `n_positions` | |
in `GPT2Config`. | |
max_text_tokens (`int`, *optional*, defaults to 404): | |
The maximum sequence length of text tokens that this model might ever be used with. Similar to | |
`n_positions` in `GPT2Config`. | |
hidden_size (`int`, *optional*, defaults to 1024): | |
Dimensionality of the embeddings and hidden states. | |
num_hidden_layers (`int`, *optional*, defaults to 30): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
n_inner (`int`, *optional*): | |
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times `hidden_size`. | |
num_mel_attn_blocks (`int`, *optional*, defaults to 6): | |
Denotes the number of self attention layers in [`ClvpConditioningEncoder`]. | |
activation_function (`str`, *optional*, defaults to `"gelu_new"`): | |
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`. | |
resid_pdrop (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
embd_pdrop (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the embeddings. | |
attention_dropout (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention. | |
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): | |
The epsilon to use in the layer normalization layers. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
summary_type (`string`, *optional*, defaults to `"cls_index"`): | |
Argument used when doing sequence summary. | |
Has to be one of the following options: | |
- `"last"`: Take the last token hidden state (like XLNet). | |
- `"first"`: Take the first token hidden state (like BERT). | |
- `"mean"`: Take the mean of all tokens hidden states. | |
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). | |
- `"attn"`: Not implemented now, use multi-head attention. | |
summary_use_proj (`bool`, *optional*, defaults to `True`): | |
Whether or not to add a projection after the vector extraction. | |
summary_activation (`str`, *optional*): | |
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation. | |
summary_proj_to_labels (`bool`, *optional*, defaults to `True`): | |
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes. | |
summary_first_dropout (`float`, *optional*, defaults to 0.1): | |
The dropout ratio to be used after the projection and activation. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
bos_token_id (`int`, *optional*, defaults to 8192): | |
Beginning of sequence token id, used at the start of the generation. | |
eos_token_id (`int`, *optional*, defaults to 8193): | |
End of sequence token id, used in the method | |
[`ClvpModelForConditionalGeneration.fix_speech_decoder_output()`] to correct decoder outputs. | |
feature_size (`int`, *optional*, defaults to 80): | |
The feature dimension of the extracted mel features. This value is used in [`ClvpConditioningEncoder`]. | |
use_attention_bias (`bool`, *optional*, defaults to `True`): | |
Whether to use bias in Query, Key and Value layers during self attention. | |
initializer_factor (`float`, *optional*, defaults to 1.0): | |
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization | |
testing). | |
decoder_fixing_codes (`list`, *optional*, defaults to `[83, 45, 45, 248]`): | |
These values are used in the method `fix_speech_decoder_output` to fix decoder generated outputs. | |
Example: | |
```python | |
>>> from transformers import ClvpDecoderConfig, ClvpDecoder | |
>>> # Initializing a ClvpDecoderConfig with susnato/clvp_dev style configuration | |
>>> decoder_configuration = ClvpDecoderConfig() | |
>>> # Initializing a ClvpDecoder (with random weights) from the susnato/clvp_dev style configuration | |
>>> model = ClvpDecoder(decoder_configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "clvp_decoder" | |
def __init__( | |
self, | |
vocab_size=8194, | |
max_position_embeddings=608, | |
max_text_tokens=404, | |
hidden_size=1024, | |
num_hidden_layers=30, | |
num_attention_heads=16, | |
n_inner=None, | |
num_mel_attn_blocks=6, | |
activation_function="gelu_new", | |
resid_pdrop=0.1, | |
embd_pdrop=0.1, | |
attention_dropout=0.1, | |
layer_norm_epsilon=1e-5, | |
initializer_range=0.02, | |
summary_type="cls_index", | |
summary_use_proj=True, | |
summary_activation=None, | |
summary_proj_to_labels=True, | |
summary_first_dropout=0.1, | |
use_cache=True, | |
bos_token_id=8192, | |
eos_token_id=8193, | |
feature_size=80, | |
use_attention_bias=True, | |
initializer_factor=1.0, | |
decoder_fixing_codes=[83, 45, 45, 248], | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.max_text_tokens = max_text_tokens | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.n_inner = n_inner | |
self.num_mel_attn_blocks = num_mel_attn_blocks | |
self.activation_function = activation_function | |
self.resid_pdrop = resid_pdrop | |
self.embd_pdrop = embd_pdrop | |
self.attention_dropout = attention_dropout | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_range = initializer_range | |
self.summary_type = summary_type | |
self.summary_use_proj = summary_use_proj | |
self.summary_activation = summary_activation | |
self.summary_first_dropout = summary_first_dropout | |
self.summary_proj_to_labels = summary_proj_to_labels | |
self.use_cache = use_cache | |
self.feature_size = feature_size | |
self.use_attention_bias = use_attention_bias | |
self.initializer_factor = initializer_factor | |
self.decoder_fixing_codes = decoder_fixing_codes | |
self.bos_token_id = bos_token_id | |
self.eos_token_id = eos_token_id | |
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the speech config dict if we are loading from ClvpConfig | |
if config_dict.get("model_type") == "clvp": | |
config_dict = config_dict["decoder_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class ClvpConfig(PretrainedConfig): | |
r""" | |
[`ClvpConfig`] is the configuration class to store the configuration of a [`ClvpModelForConditionalGeneration`]. It | |
is used to instantiate a CLVP model according to the specified arguments, defining the text model, speech model and | |
decoder model configs. Instantiating a configuration with the defaults will yield a similar configuration to that | |
of the CLVP [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
text_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize the CLVP text encoder. | |
speech_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize CLVP speech encoder. | |
decoder_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`ClvpDecoderConfig`]. | |
projection_dim (`int`, *optional*, defaults to 768): | |
Dimensionality of text and speech projection layers. | |
logit_scale_init_value (`float`, *optional*, defaults to 2.6592): | |
The initial value of the *logit_scale* parameter. Default is used as per the original CLVP implementation. | |
initializer_factor (`float`, *optional*, defaults to 1.0): | |
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization | |
testing). | |
kwargs (*optional*): | |
Dictionary of keyword arguments. | |
Example: | |
```python | |
>>> from transformers import ClvpConfig, ClvpModelForConditionalGeneration | |
>>> # Initializing a ClvpConfig with susnato/clvp_dev style configuration | |
>>> configuration = ClvpConfig() | |
>>> # Initializing a ClvpModelForConditionalGeneration (with random weights) from the susnato/clvp_dev style configuration | |
>>> model = ClvpModelForConditionalGeneration(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
>>> # We can also initialize a CLVPConfig from a CLVPTextConfig, CLVPSpeechConfig and a CLVPAutoRegressiveConfig | |
>>> from transformers import ClvpEncoderConfig, ClvpDecoderConfig | |
>>> # Initializing a CLVP text, CLVP speech and CLVP decoder configuration | |
>>> config_text = ClvpEncoderConfig() | |
>>> config_speech = ClvpEncoderConfig() | |
>>> decoder_config = ClvpDecoderConfig() | |
>>> config = ClvpConfig.from_sub_model_configs(config_text, config_speech, decoder_config) | |
```""" | |
model_type = "clvp" | |
is_composition = True | |
def __init__( | |
self, | |
text_config=None, | |
speech_config=None, | |
decoder_config=None, | |
projection_dim=768, | |
logit_scale_init_value=2.6592, | |
initializer_factor=1.0, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
if text_config is None: | |
text_config = {} | |
logger.info("`text_config` is `None`. Initializing the `ClvpEncoderConfig` with default values.") | |
if speech_config is None: | |
speech_config = {} | |
logger.info("`speech_config` is `None`. initializing the `ClvpEncoderConfig` with default values.") | |
if decoder_config is None: | |
decoder_config = {} | |
logger.info("`decoder_config` is `None`. initializing the `ClvpDecoderConfig` with default values.") | |
self.text_config = ClvpEncoderConfig(**text_config) | |
self.speech_config = ClvpEncoderConfig(**speech_config) | |
self.decoder_config = ClvpDecoderConfig(**decoder_config) | |
self.projection_dim = projection_dim | |
self.logit_scale_init_value = logit_scale_init_value | |
self.initializer_factor = initializer_factor | |
def from_sub_model_configs( | |
cls, | |
text_config: ClvpEncoderConfig, | |
speech_config: ClvpEncoderConfig, | |
decoder_config: ClvpDecoderConfig, | |
**kwargs, | |
): | |
r""" | |
Instantiate a [`ClvpConfig`] (or a derived class) from CLVP text model configuration, CLVP speech model | |
configuration and CLVP decoder model configuration. | |
Args: | |
text_config (`ClvpEncoderConfig`): | |
Text model configuration of type [`ClvpEncoderConfig`]. | |
speech_config (`ClvpEncoderConfig`): | |
Speech model configuration of type [`ClvpEncoderConfig`]. | |
decoder_config (`ClvpDecoderConfig`): | |
Decoder model configuration of type [`ClvpDecoderConfig`]. | |
Returns: | |
[`ClvpConfig`]: An instance of a configuration object | |
""" | |
return cls( | |
text_config=text_config.to_dict(), | |
speech_config=speech_config.to_dict(), | |
decoder_config=decoder_config.to_dict(), | |
**kwargs, | |
) | |