Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/clvp
/modeling_clvp.py
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch CLVP model.""" | |
import copy | |
import math | |
from dataclasses import dataclass | |
from typing import Dict, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from ...activations import ACT2FN | |
from ...generation import GenerationConfig | |
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask | |
from ...modeling_outputs import ( | |
BaseModelOutput, | |
BaseModelOutputWithPastAndCrossAttentions, | |
BaseModelOutputWithPooling, | |
CausalLMOutputWithCrossAttentions, | |
) | |
from ...modeling_utils import PreTrainedModel, SequenceSummary | |
from ...pytorch_utils import Conv1D | |
from ...utils import ( | |
ModelOutput, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_clvp import ( | |
ClvpConfig, | |
ClvpDecoderConfig, | |
ClvpEncoderConfig, | |
) | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "susnato/clvp_dev" | |
# Copied from transformers.models.clip.modeling_clip.contrastive_loss | |
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: | |
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) | |
# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->clvp, image_loss->speech_loss | |
def clvp_loss(similarity: torch.Tensor) -> torch.Tensor: | |
caption_loss = contrastive_loss(similarity) | |
speech_loss = contrastive_loss(similarity.t()) | |
return (caption_loss + speech_loss) / 2.0 | |
# Copied from transformers.models.llama.modeling_llama.rotate_half | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rotary_pos_emb(q, k, v, cos, sin, position_ids, unsqueeze_dim=1): | |
"""Applies Rotary Position Embedding to the query and key tensors. | |
Args: | |
q (`torch.Tensor`): The query tensor. | |
k (`torch.Tensor`): The key tensor. | |
cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
sin (`torch.Tensor`): The sine part of the rotary embedding. | |
position_ids (`torch.Tensor`): | |
The position indices of the tokens corresponding to the query and key tensors. For example, this can be | |
used to pass offsetted position ids when working with a KV-cache. | |
unsqueeze_dim (`int`, *optional*, defaults to 1): | |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
Returns: | |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
""" | |
cos = cos[position_ids].unsqueeze(unsqueeze_dim) | |
sin = sin[position_ids].unsqueeze(unsqueeze_dim) | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
v_embed = (v * cos) + (rotate_half(v) * sin) | |
return q_embed, k_embed, v_embed | |
def _pad_extra_bos_eos_tokens( | |
input_ids, | |
attention_mask=None, | |
pad_token_id=0, | |
bos_token_id=255, | |
eos_token_id=0, | |
add_bos_token=True, | |
add_eos_token=True, | |
): | |
""" | |
This method adds extra bos and eos tokens to input_ids and accordingly modifies the attention_mask which is used in | |
`ClvpConditioningEncoder` and the generation loop of the `ClvpModelForConditionalGeneration`. | |
""" | |
# add the bos token at the beginning | |
if add_bos_token: | |
input_ids = torch.nn.functional.pad(input_ids, (1, 0), value=bos_token_id) | |
attention_mask = ( | |
torch.nn.functional.pad(attention_mask, (1, 0), value=1) if attention_mask is not None else attention_mask | |
) | |
modified_input_ids = input_ids | |
if add_eos_token: | |
modified_input_ids = torch.zeros( | |
(input_ids.shape[0], input_ids.shape[1] + 1), dtype=input_ids.dtype, device=input_ids.device | |
) | |
for i, each_input_id in enumerate(input_ids): | |
# locate where the valid tokens end and then add the eos token | |
if torch.isin(each_input_id, pad_token_id).sum(): | |
pos = torch.where(each_input_id == pad_token_id)[0].min() | |
modified_input_ids[i] = torch.concatenate( | |
[each_input_id[:pos], torch.tensor([eos_token_id], device=input_ids.device), each_input_id[pos:]] | |
) | |
else: | |
# if there are no pad tokens present, then add eos to the end | |
modified_input_ids[i] = torch.nn.functional.pad(each_input_id, (0, 1), value=eos_token_id) | |
attention_mask = ( | |
torch.nn.functional.pad(attention_mask, (1, 0), value=1) if attention_mask is not None else attention_mask | |
) | |
return modified_input_ids, attention_mask | |
class ClvpEncoderOutput(ModelOutput): | |
""" | |
Base class for CLVP encoder's outputs that contains a pooling of the last hidden states as well as a projection | |
output (a linear layer on top of the pooled output). | |
Args: | |
embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when model is initialized with `with_projection=True`): | |
The embeddings obtained by applying the projection layer to the pooler_output. | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
The hidden state of the last layer of the model. | |
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): | |
Pooled output of the `last_hidden_state`. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of | |
the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in | |
the self-attention heads. | |
""" | |
embeds: Optional[torch.FloatTensor] = None | |
last_hidden_state: torch.FloatTensor = None | |
pooler_output: Optional[torch.FloatTensor] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class ClvpOutput(ModelOutput): | |
""" | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): | |
Contrastive loss for speech-text similarity. | |
speech_ids (`torch.LongTensor`, *optional*): | |
speech_ids (or speech candidates) generated by the `ClvpForCausalLM` model. | |
logits_per_speech (`torch.FloatTensor` of shape `(speech_batch_size, text_batch_size)`): | |
The scaled dot product scores between `speech_embeds` and `text_embeds`. This represents the speech-text | |
similarity scores. | |
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, speech_batch_size)`): | |
The scaled dot product scores between `text_embeds` and `speech_embeds`. This represents the text-speech | |
similarity scores. | |
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): | |
The text embeddings obtained by applying the projection layer to the pooled output of the text encoder | |
model. | |
speech_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): | |
The speech embeddings obtained by applying the projection layer to the pooled output of the speech encoder | |
model. | |
text_model_output (`BaseModelOutputWithPooling`): | |
The pooled output of the `last_hidden_state` of the text encoder Model. | |
speech_model_output (`BaseModelOutputWithPooling`): | |
The pooled output of the `last_hidden_state` of the speech encoder Model. | |
decoder_hidden_states (`torch.FloatTensor`, *optional*): | |
The hidden states of the decoder model. | |
text_encoder_hidden_states (`torch.FloatTensor`, *optional*): | |
The hidden states of the text encoder model. | |
speech_encoder_hidden_states (`torch.FloatTensor`, *optional*): | |
The hidden states of the speech encoder model. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
speech_ids: Optional[torch.LongTensor] = None | |
logits_per_speech: torch.FloatTensor = None | |
logits_per_text: torch.FloatTensor = None | |
text_embeds: torch.FloatTensor = None | |
speech_embeds: torch.FloatTensor = None | |
text_model_output: BaseModelOutputWithPooling = None | |
speech_model_output: BaseModelOutputWithPooling = None | |
decoder_hidden_states: torch.FloatTensor = None | |
text_encoder_hidden_states: torch.FloatTensor = None | |
speech_encoder_hidden_states: torch.FloatTensor = None | |
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Clvp | |
class ClvpRMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
ClvpRMSNorm is equivalent to T5LayerNorm | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
def extra_repr(self): | |
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" | |
class ClvpRotaryPositionalEmbedding(nn.Module): | |
""" | |
Rotary Position Embedding Class for CLVP. It was proposed in the paper 'ROFORMER: ENHANCED TRANSFORMER WITH ROTARY | |
POSITION EMBEDDING', Please see https://arxiv.org/pdf/2104.09864v1.pdf . | |
""" | |
def __init__(self, config): | |
super().__init__() | |
dim = max(config.projection_dim // (config.num_attention_heads * 2), 32) | |
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim)) | |
self.register_buffer("inv_freq", inv_freq) | |
self.cached_sequence_length = None | |
self.cached_rotary_positional_embedding = None | |
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | |
sequence_length = hidden_states.shape[1] | |
if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None: | |
return self.cached_rotary_positional_embedding | |
self.cached_sequence_length = sequence_length | |
time_stamps = torch.arange(sequence_length, device=hidden_states.device).type_as(self.inv_freq) | |
freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq) | |
embeddings = torch.cat((freqs, freqs), dim=-1) | |
self.cached_rotary_positional_embedding = embeddings.unsqueeze(0) | |
return self.cached_rotary_positional_embedding | |
class ClvpSelfAttention(nn.Module): | |
""" | |
Multi-headed attention to combine Absolute and Rotary Positional Embeddings into a single Attention module. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.embed_dim // self.num_heads | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
f" {self.num_heads})." | |
) | |
self.scale = self.head_dim**-0.5 | |
self.dropout = config.attention_dropout | |
if hasattr(config, "max_position_embeddings"): | |
max_positions = config.max_position_embeddings | |
bias = torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)) | |
bias = bias.view(1, 1, max_positions, max_positions) | |
self.register_buffer("bias", bias, persistent=False) | |
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_attention_bias) | |
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_attention_bias) | |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_attention_bias) | |
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
# Copied from transformers.models.clip.modeling_clip.CLIPAttention._shape | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
rotary_pos_emb: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
use_cache: Optional[bool] = False, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]: | |
# Raise error when position_ids is None but rotary_pos_emb is provided, because we need that when applying | |
# rotary_pos_emb to query and key states. | |
if rotary_pos_emb is not None and position_ids is None: | |
raise ValueError("`position_ids` must be provided when `rotary_pos_emb` is not None.") | |
bsz, _, embed_dim = hidden_states.size() | |
# get query proj | |
query_states = self._shape(self.q_proj(hidden_states), -1, bsz) * self.scale | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
if past_key_value is not None: | |
past_key, past_value = past_key_value | |
key_states = torch.cat((past_key, key_states), dim=-2) | |
value_states = torch.cat((past_value, value_states), dim=-2) | |
if use_cache is True: | |
present = (key_states, value_states) | |
else: | |
present = None | |
if rotary_pos_emb is not None: | |
rotary_emb_dim = rotary_pos_emb.shape[-1] | |
# Partial rotary embedding | |
query_rot, query_pass = ( | |
query_states[..., :rotary_emb_dim], | |
query_states[..., rotary_emb_dim:], | |
) | |
key_rot, key_pass = ( | |
key_states[..., :rotary_emb_dim], | |
key_states[..., rotary_emb_dim:], | |
) | |
value_rot, value_pass = ( | |
value_states[..., :rotary_emb_dim], | |
value_states[..., rotary_emb_dim:], | |
) | |
cos, sin = rotary_pos_emb.cos().squeeze(0), rotary_pos_emb.sin().squeeze(0) | |
query_rot, key_rot, value_rot = apply_rotary_pos_emb(query_rot, key_rot, value_rot, cos, sin, position_ids) | |
# [batch_size, num_heads, seq_length, head_dim] | |
query_states = torch.cat((query_rot, query_pass), dim=-1) | |
key_states = torch.cat((key_rot, key_pass), dim=-1) | |
value_states = torch.cat((value_rot, value_pass), dim=-1) | |
tgt_len = query_states.shape[2] | |
src_len = key_states.shape[2] | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights + attention_mask | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attn_weights = attn_weights * head_mask | |
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.matmul(attn_probs, value_states) | |
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, present, attn_weights | |
class ClvpGatedLinearUnit(nn.Module): | |
""" | |
`ClvpGatedLinearUnit` uses the second half of the `hidden_states` to act as a gate for the first half of the | |
`hidden_states` which controls the flow of data from the first of the tensor. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.activation_fn = ACT2FN[config.hidden_act] | |
self.proj = nn.Linear(config.hidden_size, config.intermediate_size * 2) | |
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | |
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) | |
return hidden_states * self.activation_fn(gate) | |
class ClvpEncoderMLP(nn.Module): | |
""" | |
This MLP is used in CLVP speech or text encoder models. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.fc1 = ClvpGatedLinearUnit(config) | |
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.dropout_layer = nn.Dropout(config.dropout) | |
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.dropout_layer(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
class ClvpEncoderLayer(nn.Module): | |
def __init__(self, config: ClvpConfig): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.self_attn = ClvpSelfAttention(config) | |
self.mlp = ClvpEncoderMLP(config) | |
self.input_rmsnorm = ClvpRMSNorm(self.embed_dim, eps=config.layer_norm_eps) | |
self.post_attention_rmsnorm = ClvpRMSNorm(self.embed_dim, eps=config.layer_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
rotary_pos_emb: torch.FloatTensor, | |
attention_mask: torch.LongTensor, | |
position_ids: torch.LongTensor, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor` of shape `(batch, seq_len, embed_dim)`): | |
input to the layer. | |
rotary_pos_emb (`torch.FloatTensor`): | |
rotary position embeddings generated by `ClvpRotaryPositionalEmbedding` module. | |
attention_mask (`torch.FloatTensor` of shape `(batch, 1, tgt_len, src_len)`): | |
attention mask where padding elements are indicated by very large negative values. | |
position_ids (`torch.LongTensor`): | |
Denotes position ids of the input tokens. | |
output_attentions (`bool`, *optional*, defaults to `False`): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.input_rmsnorm(hidden_states) | |
attention_outputs = self.self_attn( | |
hidden_states=hidden_states, | |
rotary_pos_emb=rotary_pos_emb, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
output_attentions=output_attentions, | |
) | |
hidden_states = attention_outputs[0] | |
hidden_states = residual + hidden_states | |
residual = hidden_states | |
hidden_states = self.post_attention_rmsnorm(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attention_outputs[-1],) | |
return outputs | |
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP with GPT2->ClvpDecoderMLP | |
class ClvpDecoderMLP(nn.Module): | |
def __init__(self, intermediate_size, config): | |
super().__init__() | |
embed_dim = config.hidden_size | |
self.c_fc = Conv1D(intermediate_size, embed_dim) | |
self.c_proj = Conv1D(embed_dim, intermediate_size) | |
self.act = ACT2FN[config.activation_function] | |
self.dropout = nn.Dropout(config.resid_pdrop) | |
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: | |
hidden_states = self.c_fc(hidden_states) | |
hidden_states = self.act(hidden_states) | |
hidden_states = self.c_proj(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
class ClvpDecoderLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
hidden_size = config.hidden_size | |
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size | |
self.input_layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
self.attn = ClvpSelfAttention(config) | |
self.post_attention_layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
self.mlp = ClvpDecoderMLP(inner_dim, config) | |
def forward( | |
self, | |
hidden_states: Optional[Tuple[torch.FloatTensor]], | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = False, | |
output_attentions: Optional[bool] = False, | |
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
attn_outputs = self.attn( | |
hidden_states, | |
past_key_value=past_key_value, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
attn_output = attn_outputs[0] | |
outputs = attn_outputs[1:] | |
# residual connection | |
hidden_states = attn_output + residual | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
feed_forward_hidden_states = self.mlp(hidden_states) | |
# residual connection | |
hidden_states = residual + feed_forward_hidden_states | |
if use_cache: | |
outputs = (hidden_states,) + outputs | |
else: | |
outputs = (hidden_states,) + outputs[1:] | |
return outputs | |
class ClvpConditioningEncoder(nn.Module): | |
""" | |
This class processes the log-mel spectrograms(extracted by the Feature Extractor) and text tokens(produced by the | |
tokenizer) as inputs for the decoder model. | |
First each log-mel spectrogram is processed into a single vector which captures valuable characteristics from each | |
of them, then the text tokens are converted into token embeddings and position embeddings are added afterwards. | |
Both of these vectors are concatenated and then passed to the decoder model. | |
The text tokens helps to incorporate the "text information" and the log-mel spectrogram is used to specify the | |
"voice characteristics" into the generated mel tokens. | |
""" | |
def __init__(self, config: ClvpConfig): | |
super().__init__() | |
self.text_config = config.text_config | |
self.decoder_config = config.decoder_config | |
self.text_token_embedding = nn.Embedding(self.text_config.vocab_size, self.decoder_config.hidden_size) | |
self.text_position_embedding = nn.Embedding( | |
self.decoder_config.max_text_tokens, self.decoder_config.hidden_size | |
) | |
self.mel_conv = nn.Conv1d(self.decoder_config.feature_size, self.decoder_config.hidden_size, kernel_size=1) | |
# define group norms to be used before each attention layer | |
num_groups = self.compute_groupnorm_groups(self.decoder_config.hidden_size) | |
self.group_norms = nn.ModuleList( | |
[ | |
nn.GroupNorm(num_groups, self.decoder_config.hidden_size, eps=1e-5, affine=True) | |
for _ in range(self.decoder_config.num_mel_attn_blocks) | |
] | |
) | |
# define the attention layers | |
self.mel_attn_blocks = nn.ModuleList( | |
[ClvpSelfAttention(self.decoder_config) for _ in range(self.decoder_config.num_mel_attn_blocks)] | |
) | |
self.gradient_checkpointing = False | |
def compute_groupnorm_groups(self, channels: int, groups: int = 32): | |
""" | |
Calculates the value of `num_groups` for nn.GroupNorm. This logic is taken from the official tortoise | |
repository. link : | |
https://github.com/neonbjb/tortoise-tts/blob/4003544b6ff4b68c09856e04d3eff9da26d023c2/tortoise/models/arch_util.py#L26 | |
""" | |
if channels <= 16: | |
groups = 8 | |
elif channels <= 64: | |
groups = 16 | |
while channels % groups != 0: | |
groups = int(groups / 2) | |
if groups <= 2: | |
raise ValueError( | |
f"Number of groups for the GroupNorm must be greater than 2, but it is {groups}." | |
f"Please consider using a different `hidden_size`" | |
) | |
return groups | |
def forward( | |
self, | |
input_features: torch.FloatTensor, | |
input_ids: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
): | |
# process text | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
batch_size, seq_length = input_ids.size() | |
elif inputs_embeds is not None: | |
batch_size, seq_length = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
# construct attention mask if not given | |
if attention_mask is None: | |
attention_mask = torch.ones([batch_size, seq_length], dtype=torch.long, device=input_ids.device) | |
# We add bos and eos input_ids in the modeling file instead of the tokenizer file to keep the logic simple | |
# This logic is specific to ClvpConditioningEncoder and not used by other modules. | |
input_ids, attention_mask = _pad_extra_bos_eos_tokens( | |
input_ids, | |
attention_mask, | |
bos_token_id=self.text_config.bos_token_id, | |
eos_token_id=self.text_config.eos_token_id, | |
) | |
inputs_embeds = self.text_token_embedding(input_ids) | |
position_ids = attention_mask.cumsum(-1) - 1 | |
position_embeds = self.text_position_embedding(position_ids) | |
text_embeds = inputs_embeds + position_embeds | |
if self.gradient_checkpointing and self.training: | |
# process each log-mel spectrogram into a single vector | |
mel_spec = torch.utils.checkpoint.checkpoint(self.mel_conv, input_features) | |
for i, mel_attn_block in enumerate(self.mel_attn_blocks): | |
residual_mel_spec = mel_spec.transpose(1, 2) | |
mel_spec = torch.utils.checkpoint.checkpoint(self.group_norms[i], mel_spec).transpose(1, 2) | |
mel_spec = torch.utils.checkpoint.checkpoint(mel_attn_block, mel_spec)[0] + residual_mel_spec | |
mel_spec = mel_spec.transpose(1, 2) | |
else: | |
# process each log-mel spectrogram into a single vector | |
mel_spec = self.mel_conv(input_features) | |
for i, mel_attn_block in enumerate(self.mel_attn_blocks): | |
residual_mel_spec = mel_spec.transpose(1, 2) | |
mel_spec = self.group_norms[i](mel_spec).transpose(1, 2) | |
mel_spec = mel_attn_block(mel_spec)[0] + residual_mel_spec | |
mel_spec = mel_spec.transpose(1, 2) | |
mel_spec = mel_spec[:, :, 0] | |
mel_spec = mel_spec.unsqueeze(1) | |
# repeat if there is either (1 text vs N audios) or (N texts vs 1 audio) | |
if text_embeds.shape[0] == 1 and mel_spec.shape[0] != 1: | |
text_embeds = text_embeds.repeat(mel_spec.shape[0], 1, 1) | |
elif text_embeds.shape[0] != 1 and mel_spec.shape[0] == 1: | |
mel_spec = mel_spec.repeat(text_embeds.shape[0], 1, 1) | |
# If there is N texts and M audios we will raise error since the number of text and audio must be same. | |
elif text_embeds.shape[0] != mel_spec.shape[0]: | |
raise ValueError( | |
f"The number of texts and number of audios must be same. " | |
f"Found {text_embeds.shape[0]} texts vs {mel_spec.shape[0]} audios" | |
) | |
return torch.concat([mel_spec, text_embeds], dim=1) | |
class ClvpPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = ClvpConfig | |
base_model_prefix = "clvp" | |
supports_gradient_checkpointing = True | |
_skip_keys_device_placement = "past_key_values" | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
factor = self.config.initializer_factor | |
if isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=factor * 0.02) | |
elif isinstance(module, (nn.Linear, Conv1D, nn.Conv1d)): | |
module.weight.data.normal_(mean=0.0, std=factor * 0.02) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, ClvpEncoderMLP): | |
factor = self.config.initializer_factor | |
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor | |
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor | |
nn.init.normal_(module.fc1.proj.weight if getattr(module.fc1, "proj") else module.fc1.weight, std=fc_std) | |
nn.init.normal_(module.fc2.weight, std=in_proj_std) | |
elif isinstance(module, ClvpEncoder): | |
config = self.config.text_config if hasattr(self.config, "text_config") else self.config | |
factor = config.initializer_factor | |
module.projection.weight.data.normal_(mean=0.0, std=factor * (config.hidden_size**-0.5)) | |
elif isinstance(module, ClvpConditioningEncoder): | |
module.mel_conv.weight.data.normal_(mean=0.0, std=factor) | |
module.mel_conv.bias.data.zero_() | |
elif isinstance(module, ClvpForCausalLM): | |
for name, p in module.named_parameters(): | |
if name == "c_proj.weight": | |
p.data.normal_( | |
mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.num_hidden_layers)) | |
) | |
if isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
CLVP_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`ClvpConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
CLVP_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, time_dim)`): | |
Indicates log mel-spectrogram representations for audio returned by [`ClvpFeatureExtractor`]. | |
conditioning_encoder_inputs_embeds (`torch.FloatTensor`, *optional*): | |
inputs_embeds for `ClvpConditioningEncoder`. Can be used in place of `input_ids`. | |
text_encoder_inputs_embeds (`torch.FloatTensor`, *optional*): | |
inputs_embeds for the text encoder model passed in place of `input_ids`. | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding text token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
return_loss (`bool`, *optional*): | |
Whether or not to return the contrastive loss. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
CLVP_DECODER_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`): | |
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see | |
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have | |
their past given to this model should not be passed as `input_ids` as they have already been computed. | |
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for | |
`past_key_values`. In other words, the `attention_mask` always has to have the length: | |
`len(past_key_values) + len(input_ids)` | |
[What are attention masks?](../glossary#attention-mask) | |
token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
1]`: | |
- 0 corresponds to a *sentence A* token, | |
- 1 corresponds to a *sentence B* token. | |
[What are token type IDs?](../glossary#token-type-ids) | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see | |
`past_key_values`). | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class ClvpEncoder(ClvpPreTrainedModel): | |
""" | |
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
[`ClvpEncoderLayer`]. | |
Args: | |
config: ClvpConfig | |
""" | |
def __init__(self, config: ClvpConfig): | |
super().__init__(config) | |
self.config = config | |
self.token_embedding = nn.Embedding(config.vocab_size, config.hidden_size) | |
self.rotary_pos_emb = ClvpRotaryPositionalEmbedding(config) if config.use_rotary_embedding else None | |
self.layers = nn.ModuleList([ClvpEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.sequence_summary = SequenceSummary(config) | |
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False) | |
self.gradient_checkpointing = False | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.token_embedding | |
def set_input_embeddings(self, value): | |
self.token_embedding = value | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
input embeddings for the model. This bypasses the model's internal embedding lookup matrix. | |
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
position_ids (`torch.LongTensor`, *optional*): | |
Denotes the position ids of `input_ids`. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
inputs_embeds = self.token_embedding(input_ids) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
# expand attention_mask and create position_ids if needed | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) | |
if position_ids is None: | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
position_ids = torch.arange(input_shape[1], dtype=torch.long, device=device) | |
position_ids = position_ids.unsqueeze(0) | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
rotary_pos_emb = self.rotary_pos_emb(inputs_embeds) if self.rotary_pos_emb is not None else None | |
hidden_states = inputs_embeds | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
encoder_layer.__call__, | |
hidden_states, | |
rotary_pos_emb, | |
attention_mask, | |
position_ids, | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
rotary_pos_emb, | |
attention_mask, | |
position_ids, | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
last_hidden_state = hidden_states | |
last_hidden_state = self.final_layer_norm(last_hidden_state) | |
# take the mean over axis 1 and get pooled output | |
pooled_output = self.sequence_summary(last_hidden_state) | |
# apply the projection layer | |
embeds = self.projection(pooled_output) | |
if not return_dict: | |
return tuple( | |
v for v in [embeds, last_hidden_state, pooled_output, encoder_states, all_attentions] if v is not None | |
) | |
return ClvpEncoderOutput( | |
embeds=embeds, | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_states, | |
attentions=all_attentions, | |
) | |
class ClvpDecoder(ClvpPreTrainedModel): | |
""" | |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`ClvpDecoderLayer`] | |
""" | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.input_embeds_layer = nn.Embedding(self.config.vocab_size, self.config.hidden_size) | |
self.position_embeds_layer = nn.Embedding(self.config.max_position_embeddings, self.config.hidden_size) | |
self.drop = nn.Dropout(self.config.embd_pdrop) | |
self.layers = nn.ModuleList([ClvpDecoderLayer(self.config) for _ in range(self.config.num_hidden_layers)]) | |
self.layer_norm = nn.LayerNorm(self.config.hidden_size, eps=self.config.layer_norm_epsilon) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.input_embeds_layer | |
def set_input_embeddings(self, new_embeddings): | |
self.input_embeds_layer = new_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.layers[layer].attn.prune_heads(heads) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
input_ids.shape[0] | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
inputs_embeds.shape[0] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids.view(-1, input_shape[-1]) | |
if past_key_values is None: | |
past_key_values_length = 0 | |
past_key_values = tuple([None] * len(self.layers)) | |
else: | |
past_key_values_length = past_key_values[0][0].size(-2) | |
if position_ids is None: | |
position_ids = torch.arange( | |
past_key_values_length, input_shape[-1] + past_key_values_length, dtype=torch.long, device=device | |
) | |
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) | |
if inputs_embeds is None: | |
inputs_embeds = self.input_embeds_layer(input_ids) | |
position_embeds = self.position_embeds_layer(position_ids) | |
inputs_embeds = inputs_embeds + position_embeds | |
attention_mask = _prepare_4d_causal_attention_mask( | |
attention_mask, input_shape, inputs_embeds, past_key_values_length | |
) | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x num_attention_heads x N x N | |
# head_mask has shape num_hidden_layers x batch x num_attention_heads x N x N | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
hidden_states = inputs_embeds | |
if token_type_ids is not None: | |
token_type_embeds = self.input_embeds_layer(token_type_ids) | |
hidden_states = hidden_states + token_type_embeds | |
hidden_states = self.drop(hidden_states) | |
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),) | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
presents = () if use_cache else None | |
all_self_attentions = () if output_attentions else None | |
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None | |
all_hidden_states = () if output_hidden_states else None | |
for i, (block, past_key_value) in enumerate(zip(self.layers, past_key_values)): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
outputs = torch.utils.checkpoint.checkpoint( | |
block.__call__, | |
hidden_states, | |
None, | |
attention_mask, | |
position_ids, | |
head_mask[i], | |
) | |
else: | |
outputs = block( | |
hidden_states, | |
past_key_value=past_key_value, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
head_mask=head_mask[i], | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states = outputs[0] | |
if use_cache is True: | |
presents = presents + (outputs[1],) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) | |
if self.config.add_cross_attention: | |
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) | |
hidden_states = self.layer_norm(hidden_states) | |
hidden_states = hidden_states.view(output_shape) | |
# Add last hidden state | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=presents, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
class ClvpModel(ClvpPreTrainedModel): | |
def __init__(self, config: ClvpDecoderConfig): | |
super().__init__(config) | |
self.config = config | |
self.decoder = ClvpDecoder(self.config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.decoder.input_embeds_layer | |
def set_input_embeddings(self, value): | |
self.decoder.input_embeds_layer = value | |
def get_decoder(self): | |
return self.decoder | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) | |
decoder_outputs = self.decoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if not return_dict: | |
return decoder_outputs | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=decoder_outputs.last_hidden_state, | |
past_key_values=decoder_outputs.past_key_values, | |
hidden_states=decoder_outputs.hidden_states, | |
attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
) | |
class ClvpForCausalLM(ClvpPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.model = ClvpModel(self.config) | |
self.final_norm = nn.LayerNorm(self.config.hidden_size) | |
self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=True) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.decoder.input_embeds_layer | |
def set_input_embeddings(self, new_embeddings): | |
self.model.decoder.input_embeds_layer = new_embeddings | |
def _prepare_model_inputs( | |
self, | |
inputs: Optional[torch.Tensor] = None, | |
bos_token_id: Optional[int] = None, | |
model_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
) -> Tuple[torch.Tensor, Optional[str], Dict[str, torch.Tensor]]: | |
""" | |
This function extracts the model-specific `inputs` for generation. | |
""" | |
input_name = self.main_input_name | |
model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None} | |
inputs_kwarg = model_kwargs.pop(input_name, None) | |
if inputs_kwarg is not None and inputs is not None: | |
raise ValueError( | |
f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed." | |
f"Make sure to either pass {inputs} or {input_name}=..." | |
) | |
elif inputs_kwarg is not None: | |
inputs = inputs_kwarg | |
if input_name == "input_ids" and "inputs_embeds" in model_kwargs: | |
model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation( | |
inputs, bos_token_id, model_kwargs=model_kwargs | |
) | |
inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds" | |
# Check if conditioning_embeds are provided or not, if yes then concatenate the bos_token_id at the end of the conditioning_embeds. | |
# Then we must subtract the positional_ids because during the forward pass it will be added anyways, so we must cancel them out here. | |
conditioning_embeds = model_kwargs.get("conditioning_embeds", None) | |
if conditioning_embeds is not None: | |
mel_start_token_embedding = self.model.decoder.input_embeds_layer( | |
torch.full( | |
(conditioning_embeds.shape[0], 1), | |
fill_value=self.config.bos_token_id, | |
device=conditioning_embeds.device, | |
) | |
) | |
mel_start_token_embedding += self.model.decoder.position_embeds_layer( | |
torch.full((conditioning_embeds.shape[0], 1), fill_value=0, device=conditioning_embeds.device) | |
) | |
conditioning_embeds = torch.concat([conditioning_embeds, mel_start_token_embedding], dim=1) | |
# subtract the positional_ids here | |
if hasattr(model_kwargs, "attention_mask"): | |
position_ids = model_kwargs["attention_mask"].long().cumsum(-1) - 1 | |
else: | |
position_ids = torch.range( | |
0, conditioning_embeds.shape[1] - 1, dtype=torch.long, device=conditioning_embeds.device | |
) | |
position_ids = position_ids.unsqueeze(0).repeat(conditioning_embeds.shape[0], 1) | |
model_kwargs["inputs_embeds"] = conditioning_embeds - self.model.decoder.position_embeds_layer( | |
position_ids | |
) | |
model_kwargs["input_ids"] = ( | |
torch.ones((model_kwargs["inputs_embeds"].shape[0], 1), dtype=torch.long, device=self.device) | |
* self.config.bos_token_id | |
) | |
return model_kwargs["inputs_embeds"], "inputs_embeds", model_kwargs | |
inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs) | |
return inputs, input_name, model_kwargs | |
def prepare_inputs_for_generation( | |
self, input_ids, past_key_values=None, inputs_embeds=None, conditioning_embeds=None, **kwargs | |
): | |
input_ids_length = input_ids.shape[-1] | |
token_type_ids = kwargs.get("token_type_ids", None) | |
# only last token for inputs_ids if past is defined in kwargs | |
if past_key_values: | |
past_length = past_key_values[0][0].shape[2] | |
# Some generation methods already pass only the last input ID | |
if input_ids.shape[1] > past_length: | |
remove_prefix_length = past_length | |
else: | |
# Default to old behavior: keep only final ID | |
remove_prefix_length = input_ids.shape[1] - 1 | |
input_ids = input_ids[:, remove_prefix_length:] | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids[:, -input_ids.shape[1] :] | |
attention_mask = kwargs.get("attention_mask", None) | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -1].unsqueeze(-1) | |
else: | |
position_ids = None | |
if conditioning_embeds is not None and past_key_values is not None: | |
position_ids = torch.tensor([input_ids_length], dtype=torch.long, device=input_ids.device) | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
model_inputs.update( | |
{ | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"position_ids": position_ids, | |
"token_type_ids": token_type_ids, | |
} | |
) | |
return model_inputs | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` | |
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.model( | |
input_ids=input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
lm_logits = self.final_norm(hidden_states) | |
lm_logits = self.lm_head(lm_logits) | |
loss = None | |
if labels is not None: | |
labels = labels.to(lm_logits.device) | |
# Shift so that tokens < n predict n | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | |
if not return_dict: | |
output = (lm_logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return CausalLMOutputWithCrossAttentions( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
cross_attentions=outputs.cross_attentions, | |
) | |
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2LMHeadModel._reorder_cache | |
def _reorder_cache( | |
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor | |
) -> Tuple[Tuple[torch.Tensor]]: | |
""" | |
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or | |
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct | |
beam_idx at every generation step. | |
""" | |
return tuple( | |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) | |
for layer_past in past_key_values | |
) | |
class ClvpModelForConditionalGeneration(ClvpPreTrainedModel): | |
config_class = ClvpConfig | |
def __init__(self, config: ClvpConfig): | |
super().__init__(config) | |
if not isinstance(config.text_config, ClvpEncoderConfig): | |
raise TypeError( | |
"config.text_config is expected to be of type `ClvpEncoderConfig` but is of type" | |
f" {type(config.text_config)}." | |
) | |
if not isinstance(config.speech_config, ClvpEncoderConfig): | |
raise TypeError( | |
"config.speech_config is expected to be of type `ClvpEncoderConfig` but is of type" | |
f" {type(config.speech_config)}." | |
) | |
if not isinstance(config.decoder_config, ClvpDecoderConfig): | |
raise TypeError( | |
"config.decoder_config is expected to be of type `ClvpDecoderConfig` but is of type" | |
f" {type(config.decoder_config)}." | |
) | |
self.conditioning_encoder = ClvpConditioningEncoder(config) | |
self.speech_decoder_model = ClvpForCausalLM(config.decoder_config) | |
self.text_encoder_model = ClvpEncoder(config.text_config) | |
self.speech_encoder_model = ClvpEncoder(config.speech_config) | |
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# taken from the original repo, | |
# link : https://github.com/neonbjb/tortoise-tts/blob/4003544b6ff4b68c09856e04d3eff9da26d023c2/tortoise/api.py#L117 | |
def fix_speech_decoder_output(self, speech_ids: torch.LongTensor) -> torch.LongTensor: | |
""" | |
This method modifies the output of the decoder model, such as replacing the `eos_token_id` and changing the | |
last few tokens of each sequence. | |
Args: | |
speech_ids (`torch.LongTensor`): | |
This refers to the output of the decoder model. | |
""" | |
decoder_fixing_codes = self.config.decoder_config.decoder_fixing_codes | |
speech_ids = speech_ids[:, 1:] | |
stop_token_indices = torch.where(speech_ids == self.speech_decoder_model.config.eos_token_id, 1, 0) | |
speech_ids = torch.masked_fill(speech_ids, mask=stop_token_indices.bool(), value=decoder_fixing_codes[0]) | |
for i, each_seq_stop_token_index in enumerate(stop_token_indices): | |
# This means that no stop tokens were found so the sentence was still being generated, in that case we don't need | |
# to apply any padding so just skip to the next sequence of tokens. | |
if each_seq_stop_token_index.sum() == 0: | |
continue | |
stm = each_seq_stop_token_index.argmax() | |
speech_ids[i, stm:] = decoder_fixing_codes[0] | |
if stm - 3 < speech_ids.shape[1]: | |
speech_ids[i, -3:] = torch.tensor( | |
[decoder_fixing_codes[1:]], device=speech_ids.device, dtype=torch.long | |
) | |
return speech_ids | |
def get_text_features( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
text_encoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
) -> torch.FloatTensor: | |
r""" | |
This method can be used to extract text_embeds from a text. The text embeddings obtained by applying the | |
projection layer to the pooled output of the CLVP text encoder model. | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
provide it. | |
[What are input IDs?](../glossary#input-ids) | |
text_encoder_inputs_embeds (`torch.FloatTensor`, *optional*): | |
inputs_embeds for the text encoder model passed in place of `input_ids`. | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
Returns: | |
`torch.FloatTensor` of shape `(batch_size, output_dim)`: | |
The text embeddings obtained by applying the projection layer to the pooled output of the CLVP Text | |
Model. | |
Examples: | |
```python | |
>>> from transformers import ClvpProcessor, ClvpModelForConditionalGeneration | |
>>> # Define the Text | |
>>> text = "This is an example text." | |
>>> # Define processor and model | |
>>> processor = ClvpProcessor.from_pretrained("susnato/clvp_dev") | |
>>> model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev") | |
>>> # Generate processor output and text embeds | |
>>> processor_output = processor(text=text, return_tensors="pt") | |
>>> text_embeds = model.get_text_features(input_ids=processor_output["input_ids"]) | |
``` | |
""" | |
outputs = self.text_encoder_model( | |
input_ids=input_ids, | |
inputs_embeds=text_encoder_inputs_embeds, | |
attention_mask=attention_mask, | |
) | |
return outputs[0] | |
def get_speech_features( | |
self, | |
speech_ids: Optional[torch.LongTensor] = None, | |
input_ids: Optional[torch.LongTensor] = None, | |
input_features: Optional[torch.FloatTensor] = None, | |
conditioning_encoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
generation_config: Optional[GenerationConfig] = None, | |
**kwargs, | |
) -> torch.FloatTensor: | |
r""" | |
This method can be used to extract speech_embeds. The speech embeddings are obtained by applying the speech | |
model on speech_ids. If speech_ids is not present but both input_ids and input_features are given then the | |
decoder model will be used to first generate the speech_ids and then applying the speech model. | |
Args: | |
speech_ids (`torch.LongTensor` of shape `(batch_size, num_speech_ids)`, *optional*): | |
Speech Tokens. Padding will be ignored by default should you provide it. If speech_ids are provided | |
then input_ids and input_features will be automatically ignored. | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Input text Tokens. Processed from the [`ClvpTokenizer`]. If speech_ids is not provided, then input_ids | |
and input_features will be used. | |
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, time_dim)`, *optional*): | |
Indicates log-melspectrogram representations for audio returned by [`ClvpFeatureExtractor`]. If | |
speech_ids is not provided, then input_ids and input_features will be used. | |
conditioning_encoder_inputs_embeds (`torch.FloatTensor`, *optional*): | |
inputs_embeds for `ClvpConditioningEncoder`. Can be used in place of `input_ids`. | |
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding speech token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
generation_config (`GenerationConfig`, *optional*): | |
generation config to control the generation of speech_ids if they are not provided. | |
Returns: | |
`torch.FloatTensor` of shape `(batch_size, output_dim)`: | |
The speech embeddings obtained by applying the projection layer to the pooled output of the CLVP Speech | |
Model. | |
Examples: | |
```python | |
>>> import datasets | |
>>> from transformers import ClvpProcessor, ClvpModelForConditionalGeneration | |
>>> # Define the Text and Load the Audio (We are taking an audio example from HuggingFace Hub using `datasets` library) | |
>>> text = "This is an example text." | |
>>> ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
>>> ds = ds.cast_column("audio", datasets.Audio(sampling_rate=22050)) | |
>>> _, audio, sr = ds.sort("id").select(range(1))[:1]["audio"][0].values() | |
>>> # Define processor and model | |
>>> processor = ClvpProcessor.from_pretrained("susnato/clvp_dev") | |
>>> model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev") | |
>>> # Generate processor output and model output | |
>>> processor_output = processor(raw_speech=audio, sampling_rate=sr, text=text, return_tensors="pt") | |
>>> speech_embeds = model.get_speech_features( | |
... input_ids=processor_output["input_ids"], input_features=processor_output["input_features"] | |
... ) | |
``` | |
""" | |
if speech_ids is None: | |
if (input_ids is None and conditioning_encoder_inputs_embeds is None) or input_features is None: | |
raise ValueError( | |
"Either speech_ids or input_ids/conditioning_encoder_inputs_embeds and input_features must be provided." | |
) | |
if generation_config is None: | |
generation_config = self.generation_config | |
generation_config.update(**kwargs) | |
conditioning_embeds = self.conditioning_encoder( | |
input_features=input_features, | |
input_ids=input_ids, | |
inputs_embeds=conditioning_encoder_inputs_embeds, | |
attention_mask=attention_mask, | |
) | |
speech_ids = self.speech_decoder_model.generate( | |
conditioning_embeds=conditioning_embeds, | |
generation_config=generation_config, | |
) | |
speech_ids = self.fix_speech_decoder_output(speech_ids[0]) | |
outputs = self.speech_encoder_model( | |
input_ids=speech_ids, | |
attention_mask=attention_mask, | |
) | |
return outputs[0] | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
input_features: torch.FloatTensor = None, | |
conditioning_encoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
text_encoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
return_loss: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
output_attentions: Optional[bool] = False, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, ClvpOutput]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> import datasets | |
>>> from transformers import ClvpProcessor, ClvpModelForConditionalGeneration | |
>>> # Define the Text and Load the Audio (We are taking an audio example from HuggingFace Hub using `datasets` library) | |
>>> text = "This is an example text." | |
>>> ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
>>> ds = ds.cast_column("audio", datasets.Audio(sampling_rate=22050)) | |
>>> _, audio, sr = ds.sort("id").select(range(1))[:1]["audio"][0].values() | |
>>> # Define processor and model | |
>>> processor = ClvpProcessor.from_pretrained("susnato/clvp_dev") | |
>>> model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev") | |
>>> # processor outputs and model outputs | |
>>> processor_output = processor(raw_speech=audio, sampling_rate=sr, text=text, return_tensors="pt") | |
>>> outputs = model( | |
... input_ids=processor_output["input_ids"], | |
... input_features=processor_output["input_features"], | |
... return_dict=True, | |
... ) | |
``` | |
""" | |
# Use CLVP model's config for some fields (if specified) instead of those of speech & text components. | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
conditioning_embeds = self.conditioning_encoder( | |
input_features=input_features, | |
input_ids=input_ids, | |
inputs_embeds=conditioning_encoder_inputs_embeds, | |
attention_mask=attention_mask, | |
) | |
decoder_outputs = self.speech_decoder_model( | |
inputs_embeds=conditioning_embeds, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
speech_ids = decoder_outputs[0] | |
# since we will get the embeds of shape `(batch_size, seq_len, embedding_dim)` during the forward pass | |
# we must convert it to tokens, to make it compaitable with speech_transformer | |
if speech_ids.ndim == 3: | |
speech_ids = speech_ids.argmax(2) | |
speech_ids = self.fix_speech_decoder_output(speech_ids) | |
speech_outputs = self.speech_encoder_model( | |
input_ids=speech_ids, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
text_outputs = self.text_encoder_model( | |
input_ids=input_ids, | |
inputs_embeds=text_encoder_inputs_embeds, | |
attention_mask=attention_mask, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
speech_embeds = speech_outputs[0] | |
text_embeds = text_outputs[0] | |
# normalized features | |
speech_embeds = speech_embeds / speech_embeds.norm(p=2, dim=-1, keepdim=True) | |
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) | |
# cosine similarity as logits | |
logit_scale = self.logit_scale.exp() | |
logits_per_text = torch.matmul(text_embeds, speech_embeds.t()) * logit_scale | |
logits_per_speech = logits_per_text.t() | |
loss = None | |
if return_loss: | |
loss = clvp_loss(logits_per_text) | |
if not return_dict: | |
output = ( | |
logits_per_speech, | |
logits_per_text, | |
text_embeds, | |
speech_embeds, | |
text_outputs[2], | |
speech_outputs[2], | |
) | |
if output_hidden_states: | |
output += ( | |
decoder_outputs[-1], | |
text_outputs[-1], | |
speech_outputs[-1], | |
) | |
return ((loss,) + output) if loss is not None else output | |
return ClvpOutput( | |
loss=loss, | |
logits_per_speech=logits_per_speech, | |
logits_per_text=logits_per_text, | |
text_embeds=text_embeds, | |
speech_embeds=speech_embeds, | |
text_model_output=text_outputs[2], | |
speech_model_output=speech_outputs[2], | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
text_encoder_hidden_states=text_outputs.hidden_states, | |
speech_encoder_hidden_states=speech_outputs.hidden_states, | |
) | |
def generate( | |
self, | |
input_ids: torch.LongTensor = None, | |
input_features: torch.FloatTensor = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
generation_config: Optional[GenerationConfig] = None, | |
pad_to_max_mel_tokens: Optional[int] = None, | |
output_hidden_states: Optional[bool] = None, | |
**kwargs, | |
): | |
""" | |
Generate method for `ClvpModelForConditionalGeneration`, this method calls the `generate` method of | |
`ClvpForCausalLM` and then uses those generated `speech_ids` to process `text_embeds` and `speech_embeds` using | |
`ClvpEncoder`. | |
Args: | |
input_ids (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Input text Tokens. Processed from the [`ClvpTokenizer`]. | |
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, time_dim)`, *optional*): | |
Indicates log-melspectrogram representations for audio returned by [`ClvpFeatureExtractor`]. | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding text token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
generation_config (`~generation.GenerationConfig`, *optional*): | |
The generation configuration to be used as base parametrization for the generation call. `**kwargs` | |
passed to generate matching the attributes of `generation_config` will override them. If | |
`generation_config` is not provided, the default will be used, which had the following loading | |
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model | |
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s | |
default values, whose documentation should be checked to parameterize generation. | |
pad_to_max_mel_tokens (`int`, *optional*): | |
Pads generated speech_ids to the specified value. This is to implement the same logic from the official | |
repo, link: https://github.com/neonbjb/tortoise-tts/blob/80f89987a5abda5e2b082618cd74f9c7411141dc/tortoise/api.py#L430 | |
and to make sure the logits are same. | |
This does not affect generation quality so please don't consider using it since it is less efficient. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of decoder model, text encoder and speech encoder models. | |
Returns: | |
`ClvpOutput` or tuple: A `ClvpOutput` (if `return_dict_in_generate=True` or when | |
`config.return_dict_in_generate=True`) or a tuple. | |
""" | |
# If the input sequences are larger than (self.config.decoder_config.max_text_tokens - 3) then raise error, | |
# because we need to add 3 tokens ( 1 bos tokens and 2 eos tokens) to the input_ids in ClvpConditioningEncoder to | |
# properly sample | |
sequence_length = input_ids.shape[-1] | |
if sequence_length > (self.config.decoder_config.max_text_tokens - 3): | |
raise ValueError( | |
f"Maximum sequence length reached! Found input_ids of length {sequence_length}." | |
f"Please make sure that the maximum length of input_ids is {self.config.decoder_config.max_text_tokens - 3}" | |
) | |
if generation_config is None: | |
generation_config = self.generation_config | |
generation_config = copy.deepcopy(generation_config) | |
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs | |
generation_config.validate() | |
self._validate_model_kwargs(model_kwargs.copy()) | |
# pad input_ids as specified in the original repo | |
# link: https://github.com/neonbjb/tortoise-tts/blob/80f89987a5abda5e2b082618cd74f9c7411141dc/tortoise/api.py#L380 | |
input_ids, attention_mask = _pad_extra_bos_eos_tokens( | |
input_ids, | |
attention_mask, | |
add_bos_token=False, | |
bos_token_id=self.config.text_config.bos_token_id, | |
eos_token_id=self.config.text_config.eos_token_id, | |
) | |
conditioning_embeds = self.conditioning_encoder( | |
input_features=input_features, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
) | |
decoder_outputs = self.speech_decoder_model.generate( | |
conditioning_embeds=conditioning_embeds, | |
generation_config=generation_config, | |
output_hidden_states=output_hidden_states, | |
return_dict=generation_config.return_dict_in_generate, | |
) | |
if isinstance(decoder_outputs, ModelOutput): | |
speech_ids = decoder_outputs.sequences | |
# pad to pad_to_max_mel_tokens if given, to replicate the original repo logic | |
# link: https://github.com/neonbjb/tortoise-tts/blob/80f89987a5abda5e2b082618cd74f9c7411141dc/tortoise/api.py#L430 | |
if pad_to_max_mel_tokens is not None: | |
padding_needed = pad_to_max_mel_tokens - speech_ids.shape[-1] | |
speech_ids = torch.nn.functional.pad( | |
speech_ids, (0, padding_needed), value=self.generation_config.eos_token_id | |
) | |
speech_ids = self.fix_speech_decoder_output(speech_ids) | |
speech_outputs = self.speech_encoder_model( | |
input_ids=speech_ids, | |
output_hidden_states=output_hidden_states, | |
return_dict=generation_config.return_dict_in_generate, | |
) | |
text_outputs = self.text_encoder_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
output_hidden_states=output_hidden_states, | |
return_dict=generation_config.return_dict_in_generate, | |
) | |
speech_embeds = speech_outputs[0] | |
text_embeds = text_outputs[0] | |
# normalized features | |
speech_embeds = speech_embeds / speech_embeds.norm(p=2, dim=-1, keepdim=True) | |
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) | |
# cosine similarity as logits | |
logit_scale = self.logit_scale.exp() | |
logits_per_text = torch.matmul(text_embeds, speech_embeds.t()) * logit_scale | |
logits_per_speech = logits_per_text.t() | |
if not generation_config.return_dict_in_generate: | |
output = ( | |
speech_ids, | |
logits_per_speech, | |
logits_per_text, | |
text_embeds, | |
speech_embeds, | |
text_outputs[2], | |
speech_outputs[2], | |
) | |
if output_hidden_states: | |
output += ( | |
decoder_outputs[-1], | |
text_outputs[-1], | |
speech_outputs[-1], | |
) | |
return output | |
return ClvpOutput( | |
speech_ids=speech_ids, | |
logits_per_speech=logits_per_speech, | |
logits_per_text=logits_per_text, | |
text_embeds=text_embeds, | |
speech_embeds=speech_embeds, | |
text_model_output=text_outputs[2], | |
speech_model_output=speech_outputs[2], | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
text_encoder_hidden_states=text_outputs.hidden_states, | |
speech_encoder_hidden_states=speech_outputs.hidden_states, | |
) | |