Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/esm
/convert_esm.py
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Convert ESM checkpoint.""" | |
import argparse | |
import pathlib | |
from pathlib import Path | |
from tempfile import TemporaryDirectory | |
import esm as esm_module | |
import torch | |
from esm.esmfold.v1.misc import batch_encode_sequences as esmfold_encode_sequences | |
from esm.esmfold.v1.pretrained import esmfold_v1 | |
from transformers.models.esm.configuration_esm import EsmConfig, EsmFoldConfig | |
from transformers.models.esm.modeling_esm import ( | |
EsmForMaskedLM, | |
EsmForSequenceClassification, | |
EsmIntermediate, | |
EsmLayer, | |
EsmOutput, | |
EsmSelfAttention, | |
EsmSelfOutput, | |
) | |
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding | |
from transformers.models.esm.tokenization_esm import EsmTokenizer | |
from transformers.utils import logging | |
logging.set_verbosity_info() | |
logger = logging.get_logger(__name__) | |
SAMPLE_DATA = [ | |
( | |
"protein1", | |
"MNGTEGPNFYVPFSNATGVVRSPFEYPQYYLAEPWQFSMLAAYMFLLIVLGFPINFLTLYVTVQHKKLRTPLNYILLNLAVADLFMVLGGFTSTLYTSLHGYFVFGPTGCNLEGFFATLGGEIALWSLVVLAIERYVVVCKPMSNFRFGENHAIMGVAFTWVMALACAAPPLAGWSRYIPEGLQCSCGIDYYTLKPEVNNESFVIYMFVVHFTIPMIIIFFCYGQLVFTVKEAAAQQQESATTQKAEKEVTRMVIIMVIAFLICWVPYASVAFYIFTHQGSNFGPIFMTIPAFFAKSAAIYNPVIYIMMNKQFRNCMLTTICCGKNPLGDDEASATVSKTETSQVAPA", | |
), | |
("protein2", "MKTVRQERLKSIVRILERSKEPVSGAQLAEELSVSRQVIVQDIAYLRSLGYNIVATPRGYVLA"), | |
("protein3", "MKTVRQERLKSI<mask>RILERSKEPVSGAQLAEELS<mask>SRQVIVQDIAYLRSLGYN<mask>VATPRGYVLAGG"), | |
("protein4", "MKTVRQERLKSI<mask>RILERSKEPVSGAQLAEELS<mask>SRQVIVQDIAYLRSLGYN<mask>VATPRGYVLA"), | |
] | |
MODEL_MAPPING = { | |
"esm1b_t33_650M_UR50S": esm_module.pretrained.esm1b_t33_650M_UR50S, | |
"esm1v_t33_650M_UR90S_1": esm_module.pretrained.esm1v_t33_650M_UR90S_1, | |
"esm1v_t33_650M_UR90S_2": esm_module.pretrained.esm1v_t33_650M_UR90S_2, | |
"esm1v_t33_650M_UR90S_3": esm_module.pretrained.esm1v_t33_650M_UR90S_3, | |
"esm1v_t33_650M_UR90S_4": esm_module.pretrained.esm1v_t33_650M_UR90S_4, | |
"esm1v_t33_650M_UR90S_5": esm_module.pretrained.esm1v_t33_650M_UR90S_5, | |
"esm2_t48_15B_UR50D": esm_module.pretrained.esm2_t48_15B_UR50D, | |
"esm2_t36_3B_UR50D": esm_module.pretrained.esm2_t36_3B_UR50D, | |
"esm2_t33_650M_UR50D": esm_module.pretrained.esm2_t33_650M_UR50D, | |
"esm2_t30_150M_UR50D": esm_module.pretrained.esm2_t30_150M_UR50D, | |
"esm2_t12_35M_UR50D": esm_module.pretrained.esm2_t12_35M_UR50D, | |
"esm2_t6_8M_UR50D": esm_module.pretrained.esm2_t6_8M_UR50D, | |
"esmfold_v1": esmfold_v1, | |
} | |
restypes = list("ARNDCQEGHILKMFPSTWYV") | |
restypes_with_x = restypes + ["X"] | |
restypes_with_extras = restypes_with_x + ["<pad>", "<mask>", "<cls>", "<sep>", "<eos>"] | |
def get_esmfold_tokenizer(): | |
with TemporaryDirectory() as tempdir: | |
vocab = "\n".join(restypes_with_extras) | |
vocab_file = Path(tempdir) / "vocab.txt" | |
vocab_file.write_text(vocab) | |
hf_tokenizer = EsmTokenizer(vocab_file=str(vocab_file)) | |
hf_tokenizer.pad_token_id = 0 # Overlaps with 'A' but that seems to be what they want | |
return hf_tokenizer | |
def transfer_and_check_weights(original_module, our_module): | |
status = our_module.load_state_dict(original_module.state_dict()) | |
if status.missing_keys: | |
raise ValueError(f"Missing keys: {status.missing_keys}") | |
if status.unexpected_keys: | |
raise ValueError(f"Unexpected keys: {status.unexpected_keys}") | |
def convert_esm_checkpoint_to_pytorch( | |
model: str, pytorch_dump_folder_path: str, classification_head: bool, push_to_repo: str, auth_token: str | |
): | |
""" | |
Copy/paste/tweak esm's weights to our BERT structure. | |
""" | |
if model.startswith("esmfold"): | |
esm = MODEL_MAPPING[model]() | |
else: | |
esm, alphabet = MODEL_MAPPING[model]() | |
esm.eval() # disable dropout | |
if model.startswith("esmfold"): | |
embed_dim = esm.esm.embed_dim | |
num_layers = esm.esm.num_layers | |
num_attention_heads = esm.esm.attention_heads | |
intermediate_size = 4 * embed_dim | |
token_dropout = esm.esm.token_dropout | |
emb_layer_norm_before = False # This code path does not exist in ESM-2 | |
position_embedding_type = "rotary" | |
is_folding_model = True | |
esmfold_config = EsmFoldConfig() | |
for key, val in esm.cfg.items(): | |
if hasattr(esmfold_config, key) and key != "trunk": | |
setattr(esmfold_config, key, val) | |
for key, val in esm.cfg.trunk.items(): | |
if hasattr(esmfold_config.trunk, key) and key != "structure_module": | |
setattr(esmfold_config.trunk, key, val) | |
for key, val in esm.cfg.trunk.structure_module.items(): | |
if hasattr(esmfold_config.trunk.structure_module, key): | |
setattr(esmfold_config.trunk.structure_module, key, val) | |
elif hasattr(esm, "args"): | |
# Indicates an ESM-1b or ESM-1v model | |
embed_dim = esm.args.embed_dim | |
num_layers = esm.args.layers | |
num_attention_heads = esm.args.attention_heads | |
intermediate_size = esm.args.ffn_embed_dim | |
token_dropout = esm.args.token_dropout | |
emb_layer_norm_before = True if esm.emb_layer_norm_before else False | |
position_embedding_type = "absolute" | |
is_folding_model = False | |
esmfold_config = None | |
else: | |
# Indicates an ESM-2 model | |
embed_dim = esm.embed_dim | |
num_layers = esm.num_layers | |
num_attention_heads = esm.attention_heads | |
intermediate_size = 4 * embed_dim # This is hardcoded in ESM-2 | |
token_dropout = esm.token_dropout | |
emb_layer_norm_before = False # This code path does not exist in ESM-2 | |
position_embedding_type = "rotary" | |
is_folding_model = False | |
esmfold_config = None | |
if is_folding_model: | |
alphabet = esm.esm.alphabet | |
vocab_list = tuple(alphabet.all_toks) | |
mask_token_id = alphabet.mask_idx | |
pad_token_id = alphabet.padding_idx | |
if is_folding_model: | |
original_esm_model = esm.esm | |
else: | |
original_esm_model = esm | |
config = EsmConfig( | |
vocab_size=original_esm_model.embed_tokens.num_embeddings, | |
mask_token_id=mask_token_id, | |
hidden_size=embed_dim, | |
num_hidden_layers=num_layers, | |
num_attention_heads=num_attention_heads, | |
intermediate_size=intermediate_size, | |
max_position_embeddings=1026, | |
layer_norm_eps=1e-5, # PyTorch default used in fairseq | |
attention_probs_dropout_prob=0.0, | |
hidden_dropout_prob=0.0, | |
pad_token_id=pad_token_id, | |
emb_layer_norm_before=emb_layer_norm_before, | |
token_dropout=token_dropout, | |
position_embedding_type=position_embedding_type, | |
is_folding_model=is_folding_model, | |
esmfold_config=esmfold_config, | |
vocab_list=vocab_list, | |
) | |
if classification_head: | |
config.num_labels = esm.classification_heads["mnli"].out_proj.weight.shape[0] | |
print("Our ESM config:", config) | |
if model.startswith("esmfold"): | |
model_class = EsmForProteinFolding | |
elif classification_head: | |
model_class = EsmForSequenceClassification | |
else: | |
model_class = EsmForMaskedLM | |
model = model_class(config) | |
model.eval() | |
# Now let's copy all the weights. | |
# Embeddings | |
model.esm.embeddings.word_embeddings.weight = original_esm_model.embed_tokens.weight | |
if position_embedding_type == "absolute": | |
model.esm.embeddings.position_embeddings.weight = original_esm_model.embed_positions.weight | |
if config.emb_layer_norm_before: | |
model.esm.embeddings.layer_norm.weight = original_esm_model.emb_layer_norm_before.weight | |
model.esm.embeddings.layer_norm.bias = original_esm_model.emb_layer_norm_before.bias | |
model.esm.encoder.emb_layer_norm_after.weight = original_esm_model.emb_layer_norm_after.weight | |
model.esm.encoder.emb_layer_norm_after.bias = original_esm_model.emb_layer_norm_after.bias | |
for i in range(config.num_hidden_layers): | |
# Encoder: start of layer | |
layer: EsmLayer = model.esm.encoder.layer[i] | |
# esm_layer: TransformerSentenceEncoderLayer = original_esm_model.layers[i] | |
esm_layer = original_esm_model.layers[i] | |
# self attention | |
self_attn: EsmSelfAttention = layer.attention.self | |
assert ( | |
esm_layer.self_attn.k_proj.weight.data.shape | |
== esm_layer.self_attn.q_proj.weight.data.shape | |
== esm_layer.self_attn.v_proj.weight.data.shape | |
== torch.Size((config.hidden_size, config.hidden_size)) | |
) | |
self_attn.query.weight.data = esm_layer.self_attn.q_proj.weight | |
self_attn.query.bias.data = esm_layer.self_attn.q_proj.bias | |
self_attn.key.weight.data = esm_layer.self_attn.k_proj.weight | |
self_attn.key.bias.data = esm_layer.self_attn.k_proj.bias | |
self_attn.value.weight.data = esm_layer.self_attn.v_proj.weight | |
self_attn.value.bias.data = esm_layer.self_attn.v_proj.bias | |
if getattr(esm_layer.self_attn, "rot_emb", None) is not None: | |
# Matt: Although inv_freq is not a trainable weight, it is computed at model init and cached. | |
# During the training of ESM-2 the model was converted to float16 precision, which also converts | |
# the inv_freq tensor, and the loss of precision remains even if the model is loaded later as float32. | |
# If we recompute inv_freq without this loss of precision then we will get subtly different rotary | |
# embeddings, which are enough to cause significant discrepancies in model outputs. To avoid this, | |
# we make sure the new model copies the data from the old inv_freq. | |
self_attn.rotary_embeddings.inv_freq.data = esm_layer.self_attn.rot_emb.inv_freq | |
# LayerNorm changes for pre-activation | |
layer.attention.LayerNorm.weight = esm_layer.self_attn_layer_norm.weight | |
layer.attention.LayerNorm.bias = esm_layer.self_attn_layer_norm.bias | |
layer.LayerNorm.weight = esm_layer.final_layer_norm.weight | |
layer.LayerNorm.bias = esm_layer.final_layer_norm.bias | |
# self-attention output | |
self_output: EsmSelfOutput = layer.attention.output | |
assert self_output.dense.weight.shape == esm_layer.self_attn.out_proj.weight.shape | |
self_output.dense.weight = esm_layer.self_attn.out_proj.weight | |
self_output.dense.bias = esm_layer.self_attn.out_proj.bias | |
# intermediate | |
intermediate: EsmIntermediate = layer.intermediate | |
assert intermediate.dense.weight.shape == esm_layer.fc1.weight.shape | |
intermediate.dense.weight = esm_layer.fc1.weight | |
intermediate.dense.bias = esm_layer.fc1.bias | |
# output | |
bert_output: EsmOutput = layer.output | |
assert bert_output.dense.weight.shape == esm_layer.fc2.weight.shape | |
bert_output.dense.weight = esm_layer.fc2.weight | |
bert_output.dense.bias = esm_layer.fc2.bias | |
# end of layer | |
if is_folding_model: | |
model.esm_s_combine.data = esm.esm_s_combine.data | |
model.af2_to_esm.data = esm.af2_to_esm.data | |
transfer_and_check_weights(esm.embedding, model.embedding) | |
transfer_and_check_weights(esm.esm_s_mlp, model.esm_s_mlp) | |
transfer_and_check_weights(esm.trunk, model.trunk) | |
transfer_and_check_weights(esm.distogram_head, model.distogram_head) | |
transfer_and_check_weights(esm.ptm_head, model.ptm_head) | |
transfer_and_check_weights(esm.lm_head, model.lm_head) | |
transfer_and_check_weights(esm.lddt_head, model.lddt_head) | |
elif classification_head: | |
model.classifier.dense.weight = esm.esm.classification_heads["mnli"].dense.weight | |
model.classifier.dense.bias = esm.classification_heads["mnli"].dense.bias | |
model.classifier.out_proj.weight = esm.classification_heads["mnli"].out_proj.weight | |
model.classifier.out_proj.bias = esm.classification_heads["mnli"].out_proj.bias | |
else: | |
# LM Head | |
model.lm_head.dense.weight = esm.lm_head.dense.weight | |
model.lm_head.dense.bias = esm.lm_head.dense.bias | |
model.lm_head.layer_norm.weight = esm.lm_head.layer_norm.weight | |
model.lm_head.layer_norm.bias = esm.lm_head.layer_norm.bias | |
model.lm_head.decoder.weight = esm.lm_head.weight | |
model.lm_head.bias = esm.lm_head.bias | |
# Contact prediction head | |
transfer_and_check_weights(esm.contact_head, model.esm.contact_head) | |
# Prepare data (first 2 sequences from ESMStructuralSplitDataset superfamily / 4) | |
if is_folding_model: | |
# Folding models aren't trained on masked inputs and don't like mask tokens. | |
sample_data = SAMPLE_DATA[:2] | |
else: | |
sample_data = SAMPLE_DATA | |
if is_folding_model: | |
hf_tokenizer = get_esmfold_tokenizer() | |
hf_tokens = hf_tokenizer( | |
[row[1] for row in sample_data], return_tensors="pt", padding=True, add_special_tokens=False | |
) | |
esmfold_aas, esmfold_mask, _, _, _ = esmfold_encode_sequences([row[1] for row in sample_data]) | |
success = torch.all(hf_tokens["input_ids"] == esmfold_aas) and torch.all( | |
hf_tokens["attention_mask"] == esmfold_mask | |
) | |
else: | |
# Let's check that we get the same results. | |
batch_converter = alphabet.get_batch_converter() | |
batch_labels, batch_strs, batch_tokens = batch_converter(sample_data) | |
# Prepare tokenizer and make sure it matches | |
with TemporaryDirectory() as tempdir: | |
vocab = "\n".join(alphabet.all_toks) | |
vocab_file = Path(tempdir) / "vocab.txt" | |
vocab_file.write_text(vocab) | |
hf_tokenizer = EsmTokenizer(vocab_file=str(vocab_file)) | |
hf_tokens = hf_tokenizer([row[1] for row in sample_data], return_tensors="pt", padding=True) | |
success = torch.all(hf_tokens["input_ids"] == batch_tokens) | |
print("Do both models tokenizers output the same tokens?", "🔥" if success else "💩") | |
if not success: | |
raise Exception("Tokenization does not match!") | |
with torch.no_grad(): | |
if is_folding_model: | |
# Let's test the model in parts | |
# ESMFold always converts the ESM stem to float16, which requires float16 ops | |
# that don't exist on CPU. Therefore, to test it we need to run it on GPU. However, | |
# ESMFold is what we in the community call a "big boy" and so we desperately avoid putting both the | |
# original and the converted model on the GPU at the same time. | |
their_output = esm.cuda().infer([row[1] for row in sample_data]) | |
our_output = model.cuda()( | |
input_ids=hf_tokens["input_ids"].cuda(), attention_mask=hf_tokens["attention_mask"].cuda() | |
) | |
else: | |
our_output = model(**hf_tokens, output_hidden_states=True) | |
our_output = our_output["logits"] | |
if classification_head: | |
their_output = esm.model.classification_heads["mnli"](esm.extract_features(batch_tokens)) | |
else: | |
their_output = esm(hf_tokens["input_ids"], repr_layers=list(range(999))) | |
their_output = their_output["logits"] | |
if is_folding_model: | |
max_absolute_diff = torch.max(torch.abs(our_output["positions"] - their_output["positions"])).item() | |
success = torch.allclose(our_output["positions"], their_output["positions"], atol=1e-5) | |
else: | |
max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item() | |
success = torch.allclose(our_output, their_output, atol=1e-5) | |
print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-5 | |
print("Do both models output the same tensors?", "🔥" if success else "💩") | |
if not success: | |
raise Exception("Something went wRoNg") | |
if not is_folding_model: | |
# Let's check contact prediction too | |
our_output = model.predict_contacts(hf_tokens["input_ids"], hf_tokens["attention_mask"]) | |
their_output = esm.predict_contacts(hf_tokens["input_ids"]) | |
max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item() | |
success = torch.allclose(our_output, their_output, atol=1e-5) | |
print("Contact prediction testing:") | |
print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-5 | |
print("Do both models output the same tensors?", "🔥" if success else "💩") | |
if not success: | |
raise Exception("Something went wRoNg") | |
pathlib.Path(pytorch_dump_folder_path).mkdir(parents=True, exist_ok=True) | |
print(f"Saving model to {pytorch_dump_folder_path}") | |
model.save_pretrained(pytorch_dump_folder_path) | |
del esm # Free up some memory before continuing | |
print(f"Saving tokenizer to {pytorch_dump_folder_path}") | |
hf_tokenizer.save_pretrained(pytorch_dump_folder_path) | |
if push_to_repo: | |
model.push_to_hub(repo_id=push_to_repo, token_token=auth_token) | |
hf_tokenizer.push_to_hub(repo_id=push_to_repo, token_token=auth_token) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
# Required parameters | |
parser.add_argument( | |
"--pytorch_dump_folder_path", type=str, required=True, help="Path to the output PyTorch model." | |
) | |
parser.add_argument( | |
"--classification_head", action="store_true", help="Whether to convert a final classification head." | |
) | |
parser.add_argument("--model", default=None, type=str, required=True, help="Name of model to convert.") | |
parser.add_argument("--push_to_repo", type=str, help="Repo to upload to (including username!).") | |
parser.add_argument("--auth_token", type=str, help="HuggingFace auth token.") | |
args = parser.parse_args() | |
convert_esm_checkpoint_to_pytorch( | |
args.model, args.pytorch_dump_folder_path, args.classification_head, args.push_to_repo, args.auth_token | |
) | |