Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/glpn
/configuration_glpn.py
# coding=utf-8 | |
# Copyright 2022 KAIST and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""GLPN model configuration""" | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class GLPNConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`GLPNModel`]. It is used to instantiate an GLPN | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the GLPN | |
[vinvino02/glpn-kitti](https://huggingface.co/vinvino02/glpn-kitti) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
num_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
num_encoder_blocks (`int`, *optional*, defaults to 4): | |
The number of encoder blocks (i.e. stages in the Mix Transformer encoder). | |
depths (`List[int]`, *optional*, defaults to `[2, 2, 2, 2]`): | |
The number of layers in each encoder block. | |
sr_ratios (`List[int]`, *optional*, defaults to `[8, 4, 2, 1]`): | |
Sequence reduction ratios in each encoder block. | |
hidden_sizes (`List[int]`, *optional*, defaults to `[32, 64, 160, 256]`): | |
Dimension of each of the encoder blocks. | |
patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`): | |
Patch size before each encoder block. | |
strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`): | |
Stride before each encoder block. | |
num_attention_heads (`List[int]`, *optional*, defaults to `[1, 2, 5, 8]`): | |
Number of attention heads for each attention layer in each block of the Transformer encoder. | |
mlp_ratios (`List[int]`, *optional*, defaults to `[4, 4, 4, 4]`): | |
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the | |
encoder blocks. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.0): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
drop_path_rate (`float`, *optional*, defaults to 0.1): | |
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-06): | |
The epsilon used by the layer normalization layers. | |
decoder_hidden_size (`int`, *optional*, defaults to 64): | |
The dimension of the decoder. | |
max_depth (`int`, *optional*, defaults to 10): | |
The maximum depth of the decoder. | |
head_in_index (`int`, *optional*, defaults to -1): | |
The index of the features to use in the head. | |
Example: | |
```python | |
>>> from transformers import GLPNModel, GLPNConfig | |
>>> # Initializing a GLPN vinvino02/glpn-kitti style configuration | |
>>> configuration = GLPNConfig() | |
>>> # Initializing a model from the vinvino02/glpn-kitti style configuration | |
>>> model = GLPNModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "glpn" | |
def __init__( | |
self, | |
num_channels=3, | |
num_encoder_blocks=4, | |
depths=[2, 2, 2, 2], | |
sr_ratios=[8, 4, 2, 1], | |
hidden_sizes=[32, 64, 160, 256], | |
patch_sizes=[7, 3, 3, 3], | |
strides=[4, 2, 2, 2], | |
num_attention_heads=[1, 2, 5, 8], | |
mlp_ratios=[4, 4, 4, 4], | |
hidden_act="gelu", | |
hidden_dropout_prob=0.0, | |
attention_probs_dropout_prob=0.0, | |
initializer_range=0.02, | |
drop_path_rate=0.1, | |
layer_norm_eps=1e-6, | |
decoder_hidden_size=64, | |
max_depth=10, | |
head_in_index=-1, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.num_channels = num_channels | |
self.num_encoder_blocks = num_encoder_blocks | |
self.depths = depths | |
self.sr_ratios = sr_ratios | |
self.hidden_sizes = hidden_sizes | |
self.patch_sizes = patch_sizes | |
self.strides = strides | |
self.mlp_ratios = mlp_ratios | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.initializer_range = initializer_range | |
self.drop_path_rate = drop_path_rate | |
self.layer_norm_eps = layer_norm_eps | |
self.decoder_hidden_size = decoder_hidden_size | |
self.max_depth = max_depth | |
self.head_in_index = head_in_index | |