Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/groupvit
/modeling_groupvit.py
# coding=utf-8 | |
# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch GroupViT model.""" | |
import collections.abc | |
import math | |
from dataclasses import dataclass | |
from typing import Any, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from ...activations import ACT2FN | |
from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask | |
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import ( | |
ModelOutput, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_groupvit import GroupViTConfig, GroupViTTextConfig, GroupViTVisionConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "nvidia/groupvit-gcc-yfcc" | |
# contrastive loss function, adapted from | |
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html | |
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: | |
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) | |
# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->groupvit | |
def groupvit_loss(similarity: torch.Tensor) -> torch.Tensor: | |
caption_loss = contrastive_loss(similarity) | |
image_loss = contrastive_loss(similarity.t()) | |
return (caption_loss + image_loss) / 2.0 | |
def hard_softmax(logits: torch.Tensor, dim: int): | |
y_soft = logits.softmax(dim) | |
# Straight through. | |
index = y_soft.max(dim, keepdim=True)[1] | |
y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0) | |
ret = y_hard - y_soft.detach() + y_soft | |
return ret | |
def gumbel_softmax(logits: torch.Tensor, tau: float = 1, hard: bool = False, dim: int = -1) -> torch.Tensor: | |
# more stable https://github.com/pytorch/pytorch/issues/41663 | |
gumbel_dist = torch.distributions.gumbel.Gumbel( | |
torch.tensor(0.0, device=logits.device, dtype=logits.dtype), | |
torch.tensor(1.0, device=logits.device, dtype=logits.dtype), | |
) | |
gumbels = gumbel_dist.sample(logits.shape) | |
gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau) | |
y_soft = gumbels.softmax(dim) | |
if hard: | |
# Straight through. | |
index = y_soft.max(dim, keepdim=True)[1] | |
y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0) | |
ret = y_hard - y_soft.detach() + y_soft | |
else: | |
# Reparametrization trick. | |
ret = y_soft | |
return ret | |
def resize_attention_map(attentions, height, width, align_corners=False): | |
""" | |
Args: | |
attentions (`torch.Tensor`): attention map of shape [batch_size, groups, feat_height*feat_width] | |
height (`int`): height of the output attention map | |
width (`int`): width of the output attention map | |
align_corners (`bool`, *optional*): the `align_corner` argument for `nn.functional.interpolate`. | |
Returns: | |
`torch.Tensor`: resized attention map of shape [batch_size, groups, height, width] | |
""" | |
scale = (height * width // attentions.shape[2]) ** 0.5 | |
if height > width: | |
feat_width = int(np.round(width / scale)) | |
feat_height = attentions.shape[2] // feat_width | |
else: | |
feat_height = int(np.round(height / scale)) | |
feat_width = attentions.shape[2] // feat_height | |
batch_size = attentions.shape[0] | |
groups = attentions.shape[1] # number of group token | |
# [batch_size, groups, height*width, groups] -> [batch_size, groups, height, width] | |
attentions = attentions.reshape(batch_size, groups, feat_height, feat_width) | |
attentions = nn.functional.interpolate( | |
attentions, size=(height, width), mode="bilinear", align_corners=align_corners | |
) | |
return attentions | |
def get_grouping_from_attentions(attentions, hw_shape): | |
""" | |
Args: | |
attentions (`tuple(torch.FloatTensor)`: tuple of attention maps returned by `GroupViTVisionTransformer` | |
hw_shape (`tuple(int)`): height and width of the output attention map | |
Returns: | |
`torch.Tensor`: the attention map of shape [batch_size, groups, height, width] | |
""" | |
attn_maps = [] | |
with torch.no_grad(): | |
prev_attn_masks = None | |
for attn_masks in attentions: | |
# [batch_size, num_groups, height x width] -> [batch_size, height x width, num_groups] | |
attn_masks = attn_masks.permute(0, 2, 1).contiguous() | |
if prev_attn_masks is None: | |
prev_attn_masks = attn_masks | |
else: | |
prev_attn_masks = prev_attn_masks @ attn_masks | |
# [batch_size, heightxwidth, num_groups] -> [batch_size, num_groups, heightxwidth] -> [batch_size, num_groups, height, width] | |
cur_attn_map = resize_attention_map(prev_attn_masks.permute(0, 2, 1).contiguous(), *hw_shape) | |
attn_maps.append(cur_attn_map) | |
# [batch_size, num_groups, height, width] | |
final_grouping = attn_maps[-1] | |
return final_grouping | |
class GroupViTCrossAttentionLayer(nn.Module): | |
def __init__(self, config: GroupViTVisionConfig): | |
super().__init__() | |
self.attn = GroupViTAttention(config) | |
self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.mlp = GroupViTMLP(config) | |
self.norm_post = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, query, key): | |
x = query | |
x = x + self.attn(query, encoder_hidden_states=key)[0] | |
x = x + self.mlp(self.norm2(x)) | |
x = self.norm_post(x) | |
return x | |
class GroupViTAssignAttention(nn.Module): | |
def __init__(self, config: GroupViTVisionConfig): | |
super().__init__() | |
self.scale = config.hidden_size**-0.5 | |
self.q_proj = nn.Linear(config.hidden_size, config.hidden_size) | |
self.k_proj = nn.Linear(config.hidden_size, config.hidden_size) | |
self.v_proj = nn.Linear(config.hidden_size, config.hidden_size) | |
self.proj = nn.Linear(config.hidden_size, config.hidden_size) | |
self.assign_eps = config.assign_eps | |
def get_attn(self, attn, gumbel=True, hard=True): | |
if gumbel and self.training: | |
attn = gumbel_softmax(attn, dim=-2, hard=hard) | |
else: | |
if hard: | |
attn = hard_softmax(attn, dim=-2) | |
else: | |
attn = nn.functional.softmax(attn, dim=-2) | |
return attn | |
def forward(self, query, key): | |
value = key | |
# [batch_size, query_length, channels] | |
query = self.q_proj(query) | |
# [batch_size, key_length, channels] | |
key = self.k_proj(key) | |
# [batch_size, key_length, channels] | |
value = self.v_proj(value) | |
# [batch_size, query_length, key_length] | |
raw_attn = (query @ key.transpose(-2, -1)) * self.scale | |
attn = self.get_attn(raw_attn) | |
soft_attn = self.get_attn(raw_attn, gumbel=False, hard=False) | |
attn = attn / (attn.sum(dim=-1, keepdim=True) + self.assign_eps) | |
out = attn @ value | |
out = self.proj(out) | |
return out, soft_attn | |
class GroupViTTokenAssign(nn.Module): | |
def __init__(self, config: GroupViTVisionConfig, num_group_token, num_output_group): | |
super().__init__() | |
self.num_output_group = num_output_group | |
# norm on group_tokens | |
self.norm_tokens = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
assign_mlp_ratio = ( | |
config.assign_mlp_ratio | |
if isinstance(config.assign_mlp_ratio, collections.abc.Iterable) | |
else (config.assign_mlp_ratio, config.assign_mlp_ratio) | |
) | |
tokens_dim, channels_dim = [int(x * config.hidden_size) for x in assign_mlp_ratio] | |
self.mlp_inter = GroupViTMixerMLP(config, num_group_token, tokens_dim, num_output_group) | |
self.norm_post_tokens = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
# norm on x | |
self.norm_x = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.pre_assign_attn = GroupViTCrossAttentionLayer(config) | |
self.assign = GroupViTAssignAttention(config) | |
self.norm_new_x = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.mlp_channels = GroupViTMLP(config, config.hidden_size, channels_dim, config.hidden_size) | |
def project_group_token(self, group_tokens): | |
""" | |
Args: | |
group_tokens (torch.Tensor): group tokens, [batch_size, num_group_tokens, channels] | |
Returns: | |
projected_group_tokens (torch.Tensor): [batch_size, num_output_groups, channels] | |
""" | |
# [B, num_output_groups, C] <- [B, num_group_tokens, C] | |
projected_group_tokens = self.mlp_inter(group_tokens) | |
projected_group_tokens = self.norm_post_tokens(projected_group_tokens) | |
return projected_group_tokens | |
def forward(self, image_tokens, group_tokens): | |
""" | |
Args: | |
image_tokens (`torch.Tensor`): image tokens, of shape [batch_size, input_length, channels] | |
group_tokens (`torch.Tensor`): group tokens, [batch_size, num_group_tokens, channels] | |
""" | |
group_tokens = self.norm_tokens(group_tokens) | |
image_tokens = self.norm_x(image_tokens) | |
# [batch_size, num_output_groups, channels] | |
projected_group_tokens = self.project_group_token(group_tokens) | |
projected_group_tokens = self.pre_assign_attn(projected_group_tokens, image_tokens) | |
new_image_tokens, attention = self.assign(projected_group_tokens, image_tokens) | |
new_image_tokens += projected_group_tokens | |
new_image_tokens = new_image_tokens + self.mlp_channels(self.norm_new_x(new_image_tokens)) | |
return new_image_tokens, attention | |
class GroupViTModelOutput(ModelOutput): | |
""" | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): | |
Contrastive loss for image-text similarity. | |
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): | |
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text | |
similarity scores. | |
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): | |
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image | |
similarity scores. | |
segmentation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels, logits_height, logits_width)`): | |
Classification scores for each pixel. | |
<Tip warning={true}> | |
The logits returned do not necessarily have the same size as the `pixel_values` passed as inputs. This is | |
to avoid doing two interpolations and lose some quality when a user needs to resize the logits to the | |
original image size as post-processing. You should always check your logits shape and resize as needed. | |
</Tip> | |
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): | |
The text embeddings obtained by applying the projection layer to the pooled output of | |
[`GroupViTTextModel`]. | |
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): | |
The image embeddings obtained by applying the projection layer to the pooled output of | |
[`GroupViTVisionModel`]. | |
text_model_output (`BaseModelOutputWithPooling`): | |
The output of the [`GroupViTTextModel`]. | |
vision_model_output (`BaseModelOutputWithPooling`): | |
The output of the [`GroupViTVisionModel`]. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits_per_image: torch.FloatTensor = None | |
logits_per_text: torch.FloatTensor = None | |
segmentation_logits: torch.FloatTensor = None | |
text_embeds: torch.FloatTensor = None | |
image_embeds: torch.FloatTensor = None | |
text_model_output: BaseModelOutputWithPooling = None | |
vision_model_output: BaseModelOutputWithPooling = None | |
def to_tuple(self) -> Tuple[Any]: | |
return tuple( | |
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() | |
for k in self.keys() | |
) | |
class GroupViTPatchEmbeddings(nn.Module): | |
""" | |
Image to Patch Embedding. | |
""" | |
def __init__( | |
self, | |
image_size: int = 224, | |
patch_size: Union[int, Tuple[int, int]] = 16, | |
num_channels: int = 3, | |
embed_dim: int = 768, | |
): | |
super().__init__() | |
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) | |
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: | |
batch_size, num_channels, height, width = pixel_values.shape | |
if not interpolate_pos_encoding: | |
if height != self.image_size[0] or width != self.image_size[1]: | |
raise ValueError( | |
f"Input image size ({height}*{width}) doesn't match model" | |
f" ({self.image_size[0]}*{self.image_size[1]})." | |
) | |
x = self.projection(pixel_values).flatten(2).transpose(1, 2) | |
return x | |
class GroupViTVisionEmbeddings(nn.Module): | |
def __init__(self, config: GroupViTVisionConfig): | |
super().__init__() | |
self.patch_embeddings = GroupViTPatchEmbeddings( | |
image_size=config.image_size, | |
patch_size=config.patch_size, | |
num_channels=config.num_channels, | |
embed_dim=config.hidden_size, | |
) | |
num_patches = self.patch_embeddings.num_patches | |
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches, config.hidden_size)) | |
self.dropout = nn.Dropout(config.dropout) | |
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.config = config | |
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: | |
""" | |
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher | |
resolution images. | |
Source: | |
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 | |
""" | |
npatch = embeddings.shape[1] | |
if npatch == self.position_embeddings.shape[1] and height == width: | |
return self.position_embeddings | |
patch_pos_embed = self.position_embeddings | |
num_original_pos_embed = patch_pos_embed.shape[1] | |
dim = embeddings.shape[-1] | |
feat_height = height // self.config.patch_size | |
feat_width = width // self.config.patch_size | |
# we add a small number to avoid floating point error in the interpolation | |
# see discussion at https://github.com/facebookresearch/dino/issues/8 | |
feat_height, feat_width = feat_height + 0.1, feat_width + 0.1 | |
original_height = original_width = math.sqrt(num_original_pos_embed) | |
reshaped_patch_pos_embed = patch_pos_embed.reshape(1, int(original_height), int(original_width), dim).permute( | |
0, 3, 1, 2 | |
) | |
scale_factor = (feat_height / original_height, feat_width / original_width) | |
patch_pos_embed = nn.functional.interpolate( | |
reshaped_patch_pos_embed, | |
scale_factor=scale_factor, | |
mode="bicubic", | |
align_corners=False, | |
) | |
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
return patch_pos_embed | |
def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: | |
batch_size, num_channels, height, width = pixel_values.shape | |
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) | |
embeddings = self.layernorm(embeddings) | |
batch_size, seq_len, _ = embeddings.size() | |
# add positional encoding to each token | |
if interpolate_pos_encoding: | |
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) | |
else: | |
embeddings = embeddings + self.position_embeddings | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->GroupViT | |
class GroupViTTextEmbeddings(nn.Module): | |
def __init__(self, config: GroupViTTextConfig): | |
super().__init__() | |
embed_dim = config.hidden_size | |
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) | |
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.register_buffer( | |
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False | |
) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
) -> torch.Tensor: | |
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] | |
if position_ids is None: | |
position_ids = self.position_ids[:, :seq_length] | |
if inputs_embeds is None: | |
inputs_embeds = self.token_embedding(input_ids) | |
position_embeddings = self.position_embedding(position_ids) | |
embeddings = inputs_embeds + position_embeddings | |
return embeddings | |
class GroupViTStage(nn.Module): | |
"""This corresponds to the `GroupingLayer` class in the GroupViT implementation.""" | |
def __init__( | |
self, | |
config: GroupViTVisionConfig, | |
depth: int, | |
num_prev_group_token: int, | |
num_group_token: int, | |
num_output_group: int, | |
): | |
super().__init__() | |
self.depth = depth | |
self.num_group_token = num_group_token | |
if num_group_token > 0: | |
self.group_token = nn.Parameter(torch.zeros(1, num_group_token, config.hidden_size)) | |
else: | |
self.group_token = None | |
self.layers = nn.ModuleList([GroupViTEncoderLayer(config) for _ in range(depth)]) | |
if num_group_token > 0: | |
self.downsample = GroupViTTokenAssign( | |
config=config, | |
num_group_token=num_group_token, | |
num_output_group=num_output_group, | |
) | |
else: | |
self.downsample = None | |
if num_prev_group_token > 0 and num_group_token > 0: | |
self.group_projector = nn.Sequential( | |
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps), | |
GroupViTMixerMLP(config, num_prev_group_token, config.hidden_size // 2, num_group_token), | |
) | |
else: | |
self.group_projector = None | |
def with_group_token(self): | |
return self.group_token is not None | |
def split_x(self, x): | |
if self.with_group_token: | |
return x[:, : -self.num_group_token], x[:, -self.num_group_token :] | |
else: | |
return x, None | |
def concat_x(self, x: torch.Tensor, group_token: Optional[torch.Tensor] = None) -> torch.Tensor: | |
if group_token is None: | |
return x | |
return torch.cat([x, group_token], dim=1) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
prev_group_token: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
`(config.encoder_attention_heads,)`. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the grouping tensors of Grouping block. | |
""" | |
if self.with_group_token: | |
group_token = self.group_token.expand(hidden_states.size(0), -1, -1) | |
if self.group_projector is not None: | |
group_token = group_token + self.group_projector(prev_group_token) | |
else: | |
group_token = None | |
x = hidden_states | |
cat_x = self.concat_x(x, group_token) | |
for layer in self.layers: | |
layer_out = layer(cat_x, attention_mask=None, causal_attention_mask=None) | |
cat_x = layer_out[0] | |
x, group_token = self.split_x(cat_x) | |
attention = None | |
if self.downsample is not None: | |
x, attention = self.downsample(x, group_token) | |
outputs = (x, group_token) | |
if output_attentions: | |
outputs = outputs + (attention,) | |
return outputs | |
class GroupViTMLP(nn.Module): | |
def __init__( | |
self, | |
config: GroupViTVisionConfig, | |
hidden_size: Optional[int] = None, | |
intermediate_size: Optional[int] = None, | |
output_size: Optional[int] = None, | |
): | |
super().__init__() | |
self.config = config | |
self.activation_fn = ACT2FN[config.hidden_act] | |
hidden_size = hidden_size if hidden_size is not None else config.hidden_size | |
intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size | |
output_size = output_size if output_size is not None else hidden_size | |
self.fc1 = nn.Linear(hidden_size, intermediate_size) | |
self.fc2 = nn.Linear(intermediate_size, output_size) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.activation_fn(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
class GroupViTMixerMLP(GroupViTMLP): | |
def forward(self, x): | |
x = super().forward(x.transpose(1, 2)) | |
return x.transpose(1, 2) | |
class GroupViTAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.embed_dim // self.num_heads | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
f" {self.num_heads})." | |
) | |
self.scale = self.head_dim**-0.5 | |
self.dropout = config.attention_dropout | |
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
causal_attention_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
bsz, tgt_len, embed_dim = hidden_states.size() | |
is_cross_attention = encoder_hidden_states is not None | |
# get query proj | |
query_states = self.q_proj(hidden_states) * self.scale | |
if is_cross_attention: | |
key_states = self._shape(self.k_proj(encoder_hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(encoder_hidden_states), -1, bsz) | |
else: | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
key_states = key_states.view(*proj_shape) | |
value_states = value_states.view(*proj_shape) | |
src_len = key_states.size(1) | |
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
# apply the causal_attention_mask first | |
if causal_attention_mask is not None: | |
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" | |
f" {causal_attention_mask.size()}" | |
) | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if output_attentions: | |
# this operation is a bit akward, but it's required to | |
# make sure that attn_weights keeps its gradient. | |
# In order to do so, attn_weights have to reshaped | |
# twice and have to be reused in the following | |
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
else: | |
attn_weights_reshaped = None | |
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.bmm(attn_probs, value_states) | |
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
attn_output = attn_output.transpose(1, 2) | |
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights_reshaped | |
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoderLayer with AltCLIP->GroupViT | |
class GroupViTEncoderLayer(nn.Module): | |
def __init__(self, config: GroupViTConfig): | |
super().__init__() | |
self.embed_dim = config.hidden_size | |
self.self_attn = GroupViTAttention(config) | |
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
self.mlp = GroupViTMLP(config) | |
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
causal_attention_mask: torch.Tensor, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
`(config.encoder_attention_heads,)`. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.layer_norm1(hidden_states) | |
hidden_states, attn_weights = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
causal_attention_mask=causal_attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = residual + hidden_states | |
residual = hidden_states | |
hidden_states = self.layer_norm2(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
class GroupViTPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = GroupViTConfig | |
base_model_prefix = "groupvit" | |
supports_gradient_checkpointing = True | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
init_range = self.config.initializer_range | |
if isinstance(module, (nn.Linear, nn.Conv2d)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=init_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
factor = self.config.initializer_factor | |
if isinstance(module, GroupViTTextEmbeddings): | |
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) | |
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) | |
elif isinstance(module, GroupViTAttention): | |
factor = self.config.initializer_factor | |
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor | |
out_proj_std = (module.embed_dim**-0.5) * factor | |
nn.init.normal_(module.q_proj.weight, std=in_proj_std) | |
nn.init.normal_(module.k_proj.weight, std=in_proj_std) | |
nn.init.normal_(module.v_proj.weight, std=in_proj_std) | |
nn.init.normal_(module.out_proj.weight, std=out_proj_std) | |
elif isinstance(module, GroupViTMLP): | |
factor = self.config.initializer_factor | |
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor | |
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor | |
nn.init.normal_(module.fc1.weight, std=fc_std) | |
nn.init.normal_(module.fc2.weight, std=in_proj_std) | |
GROUPVIT_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it | |
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`GroupViTConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
GROUPVIT_TEXT_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
GROUPVIT_VISION_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using | |
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
GROUPVIT_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See | |
[`CLIPImageProcessor.__call__`] for details. | |
return_loss (`bool`, *optional*): | |
Whether or not to return the contrastive loss. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class GroupViTVisionEncoder(nn.Module): | |
def __init__(self, config: GroupViTVisionConfig) -> None: | |
super().__init__() | |
self.config = config | |
self.stages = nn.ModuleList( | |
[ | |
GroupViTStage( | |
config=config, | |
depth=config.depths[i], | |
num_group_token=config.num_group_tokens[i], | |
num_output_group=config.num_output_groups[i], | |
num_prev_group_token=config.num_output_groups[i - 1] if i > 0 else 0, | |
) | |
for i in range(len(config.depths)) | |
] | |
) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
output_hidden_states: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[tuple, BaseModelOutput]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
all_hidden_states = () if output_hidden_states else None | |
all_groupings = () if output_attentions else None | |
group_tokens = None | |
for i, stage in enumerate(self.stages): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_outputs = stage(hidden_states, group_tokens, output_attentions) | |
hidden_states = layer_outputs[0] | |
group_tokens = layer_outputs[1] | |
if output_attentions and layer_outputs[2] is not None: | |
all_groupings = all_groupings + (layer_outputs[2],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_groupings] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_groupings | |
) | |
class GroupViTTextEncoder(nn.Module): | |
""" | |
Transformer encoder consisting of `config.num_hidden_layers` self-attention layers. Each layer is a | |
[`GroupViTEncoderLayer`]. | |
Args: | |
config: GroupViTTextConfig | |
""" | |
def __init__(self, config: GroupViTTextConfig): | |
super().__init__() | |
self.config = config | |
self.layers = nn.ModuleList([GroupViTEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
inputs_embeds, | |
attention_mask: Optional[torch.Tensor] = None, | |
causal_attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
r""" | |
Args: | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Causal mask for the text model. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
hidden_states = inputs_embeds | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
encoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
causal_attention_mask, | |
output_attentions, | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask, | |
causal_attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
) | |
class GroupViTTextTransformer(nn.Module): | |
def __init__(self, config: GroupViTTextConfig): | |
super().__init__() | |
self.config = config | |
embed_dim = config.hidden_size | |
self.embeddings = GroupViTTextEmbeddings(config) | |
self.encoder = GroupViTTextEncoder(config) | |
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
# For `pooled_output` computation | |
self.eos_token_id = config.eos_token_id | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is None: | |
raise ValueError("You have to specify input_ids") | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) | |
# CLIP's text model uses causal mask, prepare it here. | |
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 | |
causal_attention_mask = _create_4d_causal_attention_mask( | |
input_shape, hidden_states.dtype, device=hidden_states.device | |
) | |
# expand attention_mask | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) | |
encoder_outputs = self.encoder( | |
inputs_embeds=hidden_states, | |
attention_mask=attention_mask, | |
causal_attention_mask=causal_attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = encoder_outputs[0] | |
last_hidden_state = self.final_layer_norm(last_hidden_state) | |
if self.eos_token_id == 2: | |
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here. | |
# A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added | |
# ------------------------------------------------------------ | |
# text_embeds.shape = [batch_size, sequence_length, transformer.width] | |
# take features from the eot embedding (eot_token is the highest number in each sequence) | |
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 | |
pooled_output = last_hidden_state[ | |
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), | |
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1), | |
] | |
else: | |
# The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible) | |
pooled_output = last_hidden_state[ | |
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), | |
# We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`) | |
# Note: we assume each sequence (along batch dim.) contains an `eos_token_id` (e.g. prepared by the tokenizer) | |
(input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id) | |
.int() | |
.argmax(dim=-1), | |
] | |
if not return_dict: | |
return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class GroupViTTextModel(GroupViTPreTrainedModel): | |
config_class = GroupViTTextConfig | |
def __init__(self, config: GroupViTTextConfig): | |
super().__init__(config) | |
self.text_model = GroupViTTextTransformer(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> nn.Module: | |
return self.text_model.embeddings.token_embedding | |
def set_input_embeddings(self, value): | |
self.text_model.embeddings.token_embedding = value | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import CLIPTokenizer, GroupViTTextModel | |
>>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc") | |
>>> model = GroupViTTextModel.from_pretrained("nvidia/groupvit-gcc-yfcc") | |
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> last_hidden_state = outputs.last_hidden_state | |
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states | |
```""" | |
return self.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
class GroupViTVisionTransformer(nn.Module): | |
def __init__(self, config: GroupViTVisionConfig): | |
super().__init__() | |
self.config = config | |
embed_dim = config.hidden_size | |
self.embeddings = GroupViTVisionEmbeddings(config) | |
self.encoder = GroupViTVisionEncoder(config) | |
self.layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
hidden_states = self.embeddings(pixel_values) | |
encoder_outputs = self.encoder( | |
hidden_states=hidden_states, | |
output_hidden_states=output_hidden_states, | |
output_attentions=output_attentions, | |
return_dict=return_dict, | |
) | |
last_hidden_state = encoder_outputs[0] | |
# normalize the last hidden state | |
last_hidden_state = self.layernorm(last_hidden_state) | |
pooled_output = last_hidden_state.mean(dim=1) | |
if not return_dict: | |
return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class GroupViTVisionModel(GroupViTPreTrainedModel): | |
config_class = GroupViTVisionConfig | |
main_input_name = "pixel_values" | |
def __init__(self, config: GroupViTVisionConfig): | |
super().__init__(config) | |
self.vision_model = GroupViTVisionTransformer(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> GroupViTPatchEmbeddings: | |
return self.vision_model.embeddings.patch_embeddings | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, GroupViTVisionModel | |
>>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc") | |
>>> model = GroupViTVisionModel.from_pretrained("nvidia/groupvit-gcc-yfcc") | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> inputs = processor(images=image, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> last_hidden_state = outputs.last_hidden_state | |
>>> pooled_output = outputs.pooler_output # pooled CLS states | |
```""" | |
return self.vision_model( | |
pixel_values=pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
class GroupViTModel(GroupViTPreTrainedModel): | |
config_class = GroupViTConfig | |
def __init__(self, config: GroupViTConfig): | |
super().__init__(config) | |
if not isinstance(config.text_config, GroupViTTextConfig): | |
raise TypeError( | |
"config.text_config is expected to be of type GroupViTTextConfig but is of type" | |
f" {type(config.text_config)}." | |
) | |
if not isinstance(config.vision_config, GroupViTVisionConfig): | |
raise TypeError( | |
"config.vision_config is expected to be of type GroupViTVisionConfig but is of type" | |
f" {type(config.vision_config)}." | |
) | |
text_config = config.text_config | |
vision_config = config.vision_config | |
self.projection_dim = config.projection_dim | |
self.projection_intermediate_dim = config.projection_intermediate_dim | |
self.text_embed_dim = text_config.hidden_size | |
self.vision_embed_dim = vision_config.hidden_size | |
self.text_model = GroupViTTextTransformer(text_config) | |
self.vision_model = GroupViTVisionTransformer(vision_config) | |
self.visual_projection = nn.Sequential( | |
nn.Linear(self.vision_embed_dim, self.projection_intermediate_dim, bias=True), | |
nn.BatchNorm1d(self.projection_intermediate_dim), | |
nn.ReLU(inplace=True), | |
nn.Linear(self.projection_intermediate_dim, self.projection_dim, bias=True), | |
) | |
self.text_projection = nn.Sequential( | |
nn.Linear(self.text_embed_dim, self.projection_intermediate_dim, bias=True), | |
nn.BatchNorm1d(self.projection_intermediate_dim), | |
nn.ReLU(inplace=True), | |
nn.Linear(self.projection_intermediate_dim, self.projection_dim, bias=True), | |
) | |
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_text_features( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> torch.FloatTensor: | |
r""" | |
Returns: | |
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by | |
applying the projection layer to the pooled output of [`GroupViTTextModel`]. | |
Examples: | |
```python | |
>>> from transformers import CLIPTokenizer, GroupViTModel | |
>>> model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc") | |
>>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc") | |
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") | |
>>> text_features = model.get_text_features(**inputs) | |
```""" | |
# Use GROUPVIT model's config for some fields (if specified) instead of those of vision & text components. | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
text_outputs = self.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = text_outputs[1] | |
text_features = self.text_projection(pooled_output) | |
return text_features | |
def get_image_features( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> torch.FloatTensor: | |
r""" | |
Returns: | |
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by | |
applying the projection layer to the pooled output of [`GroupViTVisionModel`]. | |
Examples: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, GroupViTModel | |
>>> model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc") | |
>>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc") | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> inputs = processor(images=image, return_tensors="pt") | |
>>> image_features = model.get_image_features(**inputs) | |
```""" | |
# Use GROUPVIT model's config for some fields (if specified) instead of those of vision & text components. | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
vision_outputs = self.vision_model( | |
pixel_values=pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = vision_outputs[1] # pooled_output | |
image_features = self.visual_projection(pooled_output) | |
return image_features | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
return_loss: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
output_segmentation: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, GroupViTModelOutput]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, GroupViTModel | |
>>> model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc") | |
>>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc") | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> inputs = processor( | |
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True | |
... ) | |
>>> outputs = model(**inputs) | |
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score | |
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities | |
```""" | |
# Use GROUPVIT model's config for some fields (if specified) instead of those of vision & text components. | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_segmentation = ( | |
output_segmentation if output_segmentation is not None else self.config.output_segmentation | |
) | |
if output_segmentation: | |
output_attentions = True | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
vision_outputs = self.vision_model( | |
pixel_values=pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
text_outputs = self.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
image_embeds = vision_outputs[1] | |
image_embeds = self.visual_projection(image_embeds) | |
text_embeds = text_outputs[1] | |
text_embeds = self.text_projection(text_embeds) | |
# normalized features | |
image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True) | |
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True) | |
# cosine similarity as logits | |
logit_scale = self.logit_scale.exp() | |
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale | |
logits_per_image = logits_per_text.t() | |
seg_logits = None | |
if output_segmentation: | |
# grouped features | |
# [batch_size_image, num_group, hidden_size] | |
image_group_embeds = vision_outputs[0] | |
# [batch_size_image*num_group, hidden_size] | |
image_group_embeds = self.visual_projection(image_group_embeds.reshape(-1, image_group_embeds.shape[-1])) | |
if output_hidden_states: | |
attentions = vision_outputs[3] | |
else: | |
attentions = vision_outputs[2] | |
# [batch_size_image, num_group, height, width] | |
grouping = get_grouping_from_attentions(attentions, pixel_values.shape[2:]) | |
# normalized features | |
image_group_embeds = image_group_embeds / image_group_embeds.norm(dim=-1, keepdim=True) | |
# [batch_size_image x num_group, batch_size_text] | |
logits_per_image_group = torch.matmul(image_group_embeds, text_embeds.t()) * logit_scale | |
# [batch_size_image, batch_size_text, num_group] | |
logits_per_image_group = logits_per_image_group.reshape( | |
image_embeds.shape[0], -1, text_embeds.shape[0] | |
).permute(0, 2, 1) | |
# [batch_size_image, batch_size_text, height x width] | |
flatten_grouping = grouping.reshape(grouping.shape[0], grouping.shape[1], -1) | |
# [batch_size_image, batch_size_text, height, width] | |
seg_logits = torch.matmul(logits_per_image_group, flatten_grouping) * logit_scale | |
seg_logits = seg_logits.reshape( | |
seg_logits.shape[0], seg_logits.shape[1], grouping.shape[2], grouping.shape[3] | |
) | |
loss = None | |
if return_loss: | |
loss = groupvit_loss(logits_per_text) | |
if not return_dict: | |
if seg_logits is not None: | |
output = ( | |
logits_per_image, | |
logits_per_text, | |
seg_logits, | |
text_embeds, | |
image_embeds, | |
text_outputs, | |
vision_outputs, | |
) | |
else: | |
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) | |
return ((loss,) + output) if loss is not None else output | |
return GroupViTModelOutput( | |
loss=loss, | |
logits_per_image=logits_per_image, | |
logits_per_text=logits_per_text, | |
segmentation_logits=seg_logits, | |
text_embeds=text_embeds, | |
image_embeds=image_embeds, | |
text_model_output=text_outputs, | |
vision_model_output=vision_outputs, | |
) | |