Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/idefics2
/configuration_idefics2.py
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Idefics2 model configuration""" | |
import os | |
from typing import Union | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
from ..auto import CONFIG_MAPPING | |
logger = logging.get_logger(__name__) | |
class Idefics2VisionConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`Idefics2VisionModel`]. It is used to instantiate a | |
Idefics2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the SigLIP checkpoint | |
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) used in the Idefics2 model | |
[HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b). | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
num_channels (`int`, *optional*, defaults to 3): | |
Number of channels in the input images. | |
image_size (`int`, *optional*, defaults to 224): | |
The size (resolution) of each image. | |
patch_size (`int`, *optional*, defaults to 32): | |
The size (resolution) of each patch. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-06): | |
The epsilon used by the layer normalization layers. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
intializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation for initializing all weight matrices in the model. | |
Example: | |
```python | |
>>> from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer | |
>>> from transformers.models.idefics2.configuration_idefics2 import Idefics2VisionConfig | |
>>> # Initializing a Idefics2VisionConfig with google/siglip-base-patch16-224 style configuration | |
>>> configuration = Idefics2VisionConfig() | |
>>> # Initializing a Idefics2VisionTransformer (with random weights) from the google/siglip-base-patch16-224 style configuration | |
>>> model = Idefics2VisionTransformer(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "idefics2" | |
def __init__( | |
self, | |
hidden_size=768, | |
intermediate_size=3072, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
num_channels=3, | |
image_size=224, | |
patch_size=32, | |
hidden_act="gelu_pytorch_tanh", | |
layer_norm_eps=1e-6, | |
attention_dropout=0.0, | |
initializer_range=0.02, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.num_channels = num_channels | |
self.patch_size = patch_size | |
self.image_size = image_size | |
self.attention_dropout = attention_dropout | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the vision config dict if we are loading from Idefics2Config | |
if config_dict.get("model_type") == "idefics2": | |
config_dict = config_dict["vision_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class Idefics2PerceiverConfig(PretrainedConfig): | |
r""" | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
The non-linear activation function (function or string) in the perceiver block. | |
resampler_n_latents (`int`, *optional*, defaults to 64): | |
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128). | |
resampler_depth (`int`, *optional*, defaults to 3): | |
Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (<= 3). | |
resampler_n_heads (`int`, *optional*, defaults to 16): | |
Number of heads in each Transformer block (for multi-headed self-attention). | |
resampler_head_dim (`int`, *optional*, defaults to 96): | |
Dimensionality of each head projection in the Transformer block. | |
num_key_value_heads (`int`, *optional*, defaults to 4): | |
Number of key-value heads in the perceiver attention block. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
""" | |
model_type = "idefics2" | |
def __init__( | |
self, | |
hidden_act="silu", | |
resampler_n_latents=64, | |
resampler_depth=3, | |
resampler_n_heads=16, | |
resampler_head_dim=96, | |
num_key_value_heads=4, | |
attention_dropout=0.0, | |
**kwargs, | |
): | |
self.hidden_act = hidden_act | |
self.resampler_n_latents = resampler_n_latents | |
self.resampler_depth = resampler_depth | |
self.resampler_n_heads = resampler_n_heads | |
self.num_key_value_heads = num_key_value_heads | |
self.resampler_head_dim = resampler_head_dim | |
self.attention_dropout = attention_dropout | |
if self.num_key_value_heads > self.resampler_n_heads: | |
raise ValueError( | |
f"num_key_value_heads={self.num_key_value_heads} must be less than or equal to" | |
f" resampler_n_heads={self.resampler_n_heads}" | |
) | |
super().__init__(**kwargs) | |
class Idefics2Config(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`Idefics2Model`]. It is used to instantiate a | |
Idefics2 model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the model of the Idefics2 | |
[HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should cache the key/value pairs of the attention mechanism. | |
image_token_id (`int`, *optional*, defaults to 32001): | |
The id of the "image" token. | |
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether or not to tie the word embeddings with the token embeddings. | |
vision_config (`IdeficsVisionConfig` or `dict`, *optional*): | |
Custom vision config or dict | |
perceiver_config (`IdeficsPerceiverConfig` or `dict`, *optional*): | |
Custom perceiver config or dict | |
text_config (`MistralConfig` or `dict`, *optional*): | |
Custom text config or dict for the text model | |
Example: | |
```python | |
>>> from transformers import Idefics2Model, Idefics2Config | |
>>> # Initializing configuration | |
>>> configuration = Idefics2Config() | |
>>> # Initializing a model from the configuration | |
>>> model = Idefics2Model(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "idefics2" | |
is_composition = True | |
def __init__( | |
self, | |
use_cache=True, | |
image_token_id=32_001, | |
tie_word_embeddings=False, | |
vision_config=None, | |
perceiver_config=None, | |
text_config=None, | |
**kwargs, | |
): | |
self.image_token_id = image_token_id | |
self.use_cache = use_cache | |
self.tie_word_embeddings = tie_word_embeddings | |
if perceiver_config is None: | |
self.perceiver_config = Idefics2PerceiverConfig() | |
logger.info("perciver_config is None, using default perceiver config") | |
elif isinstance(perceiver_config, dict): | |
self.perceiver_config = Idefics2PerceiverConfig(**perceiver_config) | |
elif isinstance(perceiver_config, Idefics2PerceiverConfig): | |
self.perceiver_config = perceiver_config | |
if vision_config is None: | |
self.vision_config = Idefics2VisionConfig() | |
logger.info("vision_config is None, using default vision config") | |
elif isinstance(vision_config, dict): | |
self.vision_config = Idefics2VisionConfig(**vision_config) | |
elif isinstance(vision_config, Idefics2VisionConfig): | |
self.vision_config = vision_config | |
if isinstance(text_config, dict): | |
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "mistral" | |
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) | |
elif text_config is None: | |
logger.info("text_config is None, using default text config") | |
text_config = CONFIG_MAPPING["mistral"]( | |
max_position_embeddings=4096 * 8, | |
rms_norm_eps=1e-5, | |
# None in the original configuration_mistral, we set it to the unk_token_id | |
pad_token_id=0, | |
tie_word_embeddings=False, | |
) | |
self.text_config = text_config | |
super().__init__(**kwargs, tie_word_embeddings=tie_word_embeddings) | |