Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/jetmoe
/configuration_jetmoe.py
# coding=utf-8 | |
# Copyright 2024 JetMoe AI and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""JetMoe model configuration""" | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class JetMoeConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`JetMoeModel`]. It is used to instantiate a | |
JetMoe model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a configuration of the JetMoe-4B. | |
[jetmoe/jetmoe-8b](https://huggingface.co/jetmoe/jetmoe-8b) | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 32000): | |
Vocabulary size of the JetMoe model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`JetMoeModel`] | |
hidden_size (`int`, *optional*, defaults to 2048): | |
Dimension of the hidden representations. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_key_value_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads for each key and value in the Transformer encoder. | |
kv_channels (`int`, *optional*, defaults to 128): | |
Defines the number of channels for the key and value tensors. | |
intermediate_size (`int`, *optional*, defaults to 5632): | |
Dimension of the MLP representations. | |
max_position_embeddings (`int`, *optional*, defaults to 4096): | |
The maximum sequence length that this model might ever be used with. JetMoe's attention allows sequence of | |
up to 4096 tokens. | |
activation_function (`string`, *optional*, defaults to `"silu"`): | |
Defines the activation function for MLP experts. | |
num_local_experts (`int`, *optional*, defaults to 8): | |
Defines the number of experts in the MoE and MoA. | |
num_experts_per_tok (`int, *optional*, defaults to 2): | |
The number of experts to route per-token and for MoE and MoA. | |
output_router_logits (`bool`, *optional*, defaults to `False`): | |
Whether or not the router logits should be returned by the model. Enabeling this will also | |
allow the model to output the auxiliary loss. | |
aux_loss_coef (`float`, *optional*, defaults to 0.01): | |
The coefficient for the auxiliary loss. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
bos_token_id (`int`, *optional*, defaults to 1): | |
The id of the "beginning-of-sequence" token. | |
eos_token_id (`int`, *optional*, defaults to 2): | |
The id of the "end-of-sequence" token. | |
tie_word_embeddings (`bool`, *optional*, defaults to `True`): | |
Whether the model's input and output word embeddings should be tied. | |
rope_theta (`float`, *optional*, defaults to 10000.0): | |
The base period of the RoPE embeddings. | |
rms_norm_eps (`float`, *optional*, defaults to 1e-06): | |
The epsilon used by the rms normalization layers. | |
initializer_range (`float`, *optional*, defaults to 0.01): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
```python | |
>>> from transformers import JetMoeModel, JetMoeConfig | |
>>> # Initializing a JetMoe 4B style configuration | |
>>> configuration = JetMoeConfig() | |
>>> # Initializing a model from the JetMoe 4B style configuration | |
>>> model = JetMoeModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "jetmoe" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
vocab_size=32000, | |
hidden_size=2048, | |
num_hidden_layers=12, | |
num_key_value_heads=16, | |
kv_channels=128, | |
intermediate_size=5632, | |
max_position_embeddings=4096, | |
activation_function="silu", | |
num_local_experts=8, | |
num_experts_per_tok=2, | |
output_router_logits=False, | |
aux_loss_coef=0.01, | |
use_cache=True, | |
bos_token_id=1, | |
eos_token_id=2, | |
tie_word_embeddings=True, | |
rope_theta=10000.0, | |
rms_norm_eps=1e-6, | |
initializer_range=0.01, | |
attention_dropout=0.0, | |
**kwargs, | |
): | |
if num_experts_per_tok > num_local_experts: | |
raise ValueError("`num_experts_per_tok` must be less than or equal to `num_local_experts`") | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_key_value_heads * num_experts_per_tok | |
self.num_key_value_heads = num_key_value_heads | |
self.kv_channels = kv_channels | |
self.intermediate_size = intermediate_size | |
self.max_position_embeddings = max_position_embeddings | |
self.activation_function = activation_function | |
self.num_local_experts = num_local_experts | |
self.num_experts_per_tok = num_experts_per_tok | |
self.output_router_logits = output_router_logits | |
self.aux_loss_coef = aux_loss_coef | |
self.use_cache = use_cache | |
self.initializer_range = initializer_range | |
self.attention_dropout = attention_dropout | |
self.bos_token_id = bos_token_id | |
self.eos_token_id = eos_token_id | |
self.rope_theta = rope_theta | |
self.rms_norm_eps = rms_norm_eps | |
super().__init__( | |
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs | |
) | |