Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/layoutlmv2
/configuration_layoutlmv2.py
# coding=utf-8 | |
# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""LayoutLMv2 model configuration""" | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import is_detectron2_available, logging | |
logger = logging.get_logger(__name__) | |
# soft dependency | |
if is_detectron2_available(): | |
import detectron2 | |
class LayoutLMv2Config(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`LayoutLMv2Model`]. It is used to instantiate an | |
LayoutLMv2 model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the LayoutLMv2 | |
[microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 30522): | |
Vocabulary size of the LayoutLMv2 model. Defines the number of different tokens that can be represented by | |
the `inputs_ids` passed when calling [`LayoutLMv2Model`] or [`TFLayoutLMv2Model`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimension of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (`int`, *optional*, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
type_vocab_size (`int`, *optional*, defaults to 2): | |
The vocabulary size of the `token_type_ids` passed when calling [`LayoutLMv2Model`] or | |
[`TFLayoutLMv2Model`]. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
max_2d_position_embeddings (`int`, *optional*, defaults to 1024): | |
The maximum value that the 2D position embedding might ever be used with. Typically set this to something | |
large just in case (e.g., 1024). | |
max_rel_pos (`int`, *optional*, defaults to 128): | |
The maximum number of relative positions to be used in the self-attention mechanism. | |
rel_pos_bins (`int`, *optional*, defaults to 32): | |
The number of relative position bins to be used in the self-attention mechanism. | |
fast_qkv (`bool`, *optional*, defaults to `True`): | |
Whether or not to use a single matrix for the queries, keys, values in the self-attention layers. | |
max_rel_2d_pos (`int`, *optional*, defaults to 256): | |
The maximum number of relative 2D positions in the self-attention mechanism. | |
rel_2d_pos_bins (`int`, *optional*, defaults to 64): | |
The number of 2D relative position bins in the self-attention mechanism. | |
image_feature_pool_shape (`List[int]`, *optional*, defaults to [7, 7, 256]): | |
The shape of the average-pooled feature map. | |
coordinate_size (`int`, *optional*, defaults to 128): | |
Dimension of the coordinate embeddings. | |
shape_size (`int`, *optional*, defaults to 128): | |
Dimension of the width and height embeddings. | |
has_relative_attention_bias (`bool`, *optional*, defaults to `True`): | |
Whether or not to use a relative attention bias in the self-attention mechanism. | |
has_spatial_attention_bias (`bool`, *optional*, defaults to `True`): | |
Whether or not to use a spatial attention bias in the self-attention mechanism. | |
has_visual_segment_embedding (`bool`, *optional*, defaults to `False`): | |
Whether or not to add visual segment embeddings. | |
detectron2_config_args (`dict`, *optional*): | |
Dictionary containing the configuration arguments of the Detectron2 visual backbone. Refer to [this | |
file](https://github.com/microsoft/unilm/blob/master/layoutlmft/layoutlmft/models/layoutlmv2/detectron2_config.py) | |
for details regarding default values. | |
Example: | |
```python | |
>>> from transformers import LayoutLMv2Config, LayoutLMv2Model | |
>>> # Initializing a LayoutLMv2 microsoft/layoutlmv2-base-uncased style configuration | |
>>> configuration = LayoutLMv2Config() | |
>>> # Initializing a model (with random weights) from the microsoft/layoutlmv2-base-uncased style configuration | |
>>> model = LayoutLMv2Model(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "layoutlmv2" | |
def __init__( | |
self, | |
vocab_size=30522, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=2, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
pad_token_id=0, | |
max_2d_position_embeddings=1024, | |
max_rel_pos=128, | |
rel_pos_bins=32, | |
fast_qkv=True, | |
max_rel_2d_pos=256, | |
rel_2d_pos_bins=64, | |
convert_sync_batchnorm=True, | |
image_feature_pool_shape=[7, 7, 256], | |
coordinate_size=128, | |
shape_size=128, | |
has_relative_attention_bias=True, | |
has_spatial_attention_bias=True, | |
has_visual_segment_embedding=False, | |
detectron2_config_args=None, | |
**kwargs, | |
): | |
super().__init__( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
num_hidden_layers=num_hidden_layers, | |
num_attention_heads=num_attention_heads, | |
intermediate_size=intermediate_size, | |
hidden_act=hidden_act, | |
hidden_dropout_prob=hidden_dropout_prob, | |
attention_probs_dropout_prob=attention_probs_dropout_prob, | |
max_position_embeddings=max_position_embeddings, | |
type_vocab_size=type_vocab_size, | |
initializer_range=initializer_range, | |
layer_norm_eps=layer_norm_eps, | |
pad_token_id=pad_token_id, | |
**kwargs, | |
) | |
self.max_2d_position_embeddings = max_2d_position_embeddings | |
self.max_rel_pos = max_rel_pos | |
self.rel_pos_bins = rel_pos_bins | |
self.fast_qkv = fast_qkv | |
self.max_rel_2d_pos = max_rel_2d_pos | |
self.rel_2d_pos_bins = rel_2d_pos_bins | |
self.convert_sync_batchnorm = convert_sync_batchnorm | |
self.image_feature_pool_shape = image_feature_pool_shape | |
self.coordinate_size = coordinate_size | |
self.shape_size = shape_size | |
self.has_relative_attention_bias = has_relative_attention_bias | |
self.has_spatial_attention_bias = has_spatial_attention_bias | |
self.has_visual_segment_embedding = has_visual_segment_embedding | |
self.detectron2_config_args = ( | |
detectron2_config_args if detectron2_config_args is not None else self.get_default_detectron2_config() | |
) | |
def get_default_detectron2_config(cls): | |
return { | |
"MODEL.MASK_ON": True, | |
"MODEL.PIXEL_STD": [57.375, 57.120, 58.395], | |
"MODEL.BACKBONE.NAME": "build_resnet_fpn_backbone", | |
"MODEL.FPN.IN_FEATURES": ["res2", "res3", "res4", "res5"], | |
"MODEL.ANCHOR_GENERATOR.SIZES": [[32], [64], [128], [256], [512]], | |
"MODEL.RPN.IN_FEATURES": ["p2", "p3", "p4", "p5", "p6"], | |
"MODEL.RPN.PRE_NMS_TOPK_TRAIN": 2000, | |
"MODEL.RPN.PRE_NMS_TOPK_TEST": 1000, | |
"MODEL.RPN.POST_NMS_TOPK_TRAIN": 1000, | |
"MODEL.POST_NMS_TOPK_TEST": 1000, | |
"MODEL.ROI_HEADS.NAME": "StandardROIHeads", | |
"MODEL.ROI_HEADS.NUM_CLASSES": 5, | |
"MODEL.ROI_HEADS.IN_FEATURES": ["p2", "p3", "p4", "p5"], | |
"MODEL.ROI_BOX_HEAD.NAME": "FastRCNNConvFCHead", | |
"MODEL.ROI_BOX_HEAD.NUM_FC": 2, | |
"MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION": 14, | |
"MODEL.ROI_MASK_HEAD.NAME": "MaskRCNNConvUpsampleHead", | |
"MODEL.ROI_MASK_HEAD.NUM_CONV": 4, | |
"MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION": 7, | |
"MODEL.RESNETS.DEPTH": 101, | |
"MODEL.RESNETS.SIZES": [[32], [64], [128], [256], [512]], | |
"MODEL.RESNETS.ASPECT_RATIOS": [[0.5, 1.0, 2.0]], | |
"MODEL.RESNETS.OUT_FEATURES": ["res2", "res3", "res4", "res5"], | |
"MODEL.RESNETS.NUM_GROUPS": 32, | |
"MODEL.RESNETS.WIDTH_PER_GROUP": 8, | |
"MODEL.RESNETS.STRIDE_IN_1X1": False, | |
} | |
def get_detectron2_config(self): | |
detectron2_config = detectron2.config.get_cfg() | |
for k, v in self.detectron2_config_args.items(): | |
attributes = k.split(".") | |
to_set = detectron2_config | |
for attribute in attributes[:-1]: | |
to_set = getattr(to_set, attribute) | |
setattr(to_set, attributes[-1], v) | |
return detectron2_config | |