Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/markuplm
/processing_markuplm.py
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Processor class for MarkupLM. | |
""" | |
from typing import Optional, Union | |
from ...file_utils import TensorType | |
from ...processing_utils import ProcessorMixin | |
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, TruncationStrategy | |
class MarkupLMProcessor(ProcessorMixin): | |
r""" | |
Constructs a MarkupLM processor which combines a MarkupLM feature extractor and a MarkupLM tokenizer into a single | |
processor. | |
[`MarkupLMProcessor`] offers all the functionalities you need to prepare data for the model. | |
It first uses [`MarkupLMFeatureExtractor`] to extract nodes and corresponding xpaths from one or more HTML strings. | |
Next, these are provided to [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`], which turns them into token-level | |
`input_ids`, `attention_mask`, `token_type_ids`, `xpath_tags_seq` and `xpath_subs_seq`. | |
Args: | |
feature_extractor (`MarkupLMFeatureExtractor`): | |
An instance of [`MarkupLMFeatureExtractor`]. The feature extractor is a required input. | |
tokenizer (`MarkupLMTokenizer` or `MarkupLMTokenizerFast`): | |
An instance of [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`]. The tokenizer is a required input. | |
parse_html (`bool`, *optional*, defaults to `True`): | |
Whether or not to use `MarkupLMFeatureExtractor` to parse HTML strings into nodes and corresponding xpaths. | |
""" | |
feature_extractor_class = "MarkupLMFeatureExtractor" | |
tokenizer_class = ("MarkupLMTokenizer", "MarkupLMTokenizerFast") | |
parse_html = True | |
def __call__( | |
self, | |
html_strings=None, | |
nodes=None, | |
xpaths=None, | |
node_labels=None, | |
questions=None, | |
add_special_tokens: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
**kwargs, | |
) -> BatchEncoding: | |
""" | |
This method first forwards the `html_strings` argument to [`~MarkupLMFeatureExtractor.__call__`]. Next, it | |
passes the `nodes` and `xpaths` along with the additional arguments to [`~MarkupLMTokenizer.__call__`] and | |
returns the output. | |
Optionally, one can also provide a `text` argument which is passed along as first sequence. | |
Please refer to the docstring of the above two methods for more information. | |
""" | |
# first, create nodes and xpaths | |
if self.parse_html: | |
if html_strings is None: | |
raise ValueError("Make sure to pass HTML strings in case `parse_html` is set to `True`") | |
if nodes is not None or xpaths is not None or node_labels is not None: | |
raise ValueError( | |
"Please don't pass nodes, xpaths nor node labels in case `parse_html` is set to `True`" | |
) | |
features = self.feature_extractor(html_strings) | |
nodes = features["nodes"] | |
xpaths = features["xpaths"] | |
else: | |
if html_strings is not None: | |
raise ValueError("You have passed HTML strings but `parse_html` is set to `False`.") | |
if nodes is None or xpaths is None: | |
raise ValueError("Make sure to pass nodes and xpaths in case `parse_html` is set to `False`") | |
# # second, apply the tokenizer | |
if questions is not None and self.parse_html: | |
if isinstance(questions, str): | |
questions = [questions] # add batch dimension (as the feature extractor always adds a batch dimension) | |
encoded_inputs = self.tokenizer( | |
text=questions if questions is not None else nodes, | |
text_pair=nodes if questions is not None else None, | |
xpaths=xpaths, | |
node_labels=node_labels, | |
add_special_tokens=add_special_tokens, | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_token_type_ids=return_token_type_ids, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_length=return_length, | |
verbose=verbose, | |
return_tensors=return_tensors, | |
**kwargs, | |
) | |
return encoded_inputs | |
def batch_decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer | |
to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
def decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the | |
docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, **kwargs) | |
def model_input_names(self): | |
tokenizer_input_names = self.tokenizer.model_input_names | |
return tokenizer_input_names | |