Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/mobilevitv2
/configuration_mobilevitv2.py
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""MobileViTV2 model configuration""" | |
from collections import OrderedDict | |
from typing import Mapping | |
from packaging import version | |
from ...configuration_utils import PretrainedConfig | |
from ...onnx import OnnxConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class MobileViTV2Config(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`MobileViTV2Model`]. It is used to instantiate a | |
MobileViTV2 model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the MobileViTV2 | |
[apple/mobilevitv2-1.0](https://huggingface.co/apple/mobilevitv2-1.0) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
num_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
image_size (`int`, *optional*, defaults to 256): | |
The size (resolution) of each image. | |
patch_size (`int`, *optional*, defaults to 2): | |
The size (resolution) of each patch. | |
expand_ratio (`float`, *optional*, defaults to 2.0): | |
Expansion factor for the MobileNetv2 layers. | |
hidden_act (`str` or `function`, *optional*, defaults to `"swish"`): | |
The non-linear activation function (function or string) in the Transformer encoder and convolution layers. | |
conv_kernel_size (`int`, *optional*, defaults to 3): | |
The size of the convolutional kernel in the MobileViTV2 layer. | |
output_stride (`int`, *optional*, defaults to 32): | |
The ratio of the spatial resolution of the output to the resolution of the input image. | |
classifier_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for attached classifiers. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-05): | |
The epsilon used by the layer normalization layers. | |
aspp_out_channels (`int`, *optional*, defaults to 512): | |
Number of output channels used in the ASPP layer for semantic segmentation. | |
atrous_rates (`List[int]`, *optional*, defaults to `[6, 12, 18]`): | |
Dilation (atrous) factors used in the ASPP layer for semantic segmentation. | |
aspp_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the ASPP layer for semantic segmentation. | |
semantic_loss_ignore_index (`int`, *optional*, defaults to 255): | |
The index that is ignored by the loss function of the semantic segmentation model. | |
n_attn_blocks (`List[int]`, *optional*, defaults to `[2, 4, 3]`): | |
The number of attention blocks in each MobileViTV2Layer | |
base_attn_unit_dims (`List[int]`, *optional*, defaults to `[128, 192, 256]`): | |
The base multiplier for dimensions of attention blocks in each MobileViTV2Layer | |
width_multiplier (`float`, *optional*, defaults to 1.0): | |
The width multiplier for MobileViTV2. | |
ffn_multiplier (`int`, *optional*, defaults to 2): | |
The FFN multiplier for MobileViTV2. | |
attn_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout in the attention layer. | |
ffn_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout between FFN layers. | |
Example: | |
```python | |
>>> from transformers import MobileViTV2Config, MobileViTV2Model | |
>>> # Initializing a mobilevitv2-small style configuration | |
>>> configuration = MobileViTV2Config() | |
>>> # Initializing a model from the mobilevitv2-small style configuration | |
>>> model = MobileViTV2Model(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "mobilevitv2" | |
def __init__( | |
self, | |
num_channels=3, | |
image_size=256, | |
patch_size=2, | |
expand_ratio=2.0, | |
hidden_act="swish", | |
conv_kernel_size=3, | |
output_stride=32, | |
classifier_dropout_prob=0.1, | |
initializer_range=0.02, | |
layer_norm_eps=1e-5, | |
aspp_out_channels=512, | |
atrous_rates=[6, 12, 18], | |
aspp_dropout_prob=0.1, | |
semantic_loss_ignore_index=255, | |
n_attn_blocks=[2, 4, 3], | |
base_attn_unit_dims=[128, 192, 256], | |
width_multiplier=1.0, | |
ffn_multiplier=2, | |
attn_dropout=0.0, | |
ffn_dropout=0.0, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.num_channels = num_channels | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.expand_ratio = expand_ratio | |
self.hidden_act = hidden_act | |
self.conv_kernel_size = conv_kernel_size | |
self.output_stride = output_stride | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.n_attn_blocks = n_attn_blocks | |
self.base_attn_unit_dims = base_attn_unit_dims | |
self.width_multiplier = width_multiplier | |
self.ffn_multiplier = ffn_multiplier | |
self.ffn_dropout = ffn_dropout | |
self.attn_dropout = attn_dropout | |
self.classifier_dropout_prob = classifier_dropout_prob | |
# decode head attributes for semantic segmentation | |
self.aspp_out_channels = aspp_out_channels | |
self.atrous_rates = atrous_rates | |
self.aspp_dropout_prob = aspp_dropout_prob | |
self.semantic_loss_ignore_index = semantic_loss_ignore_index | |
class MobileViTV2OnnxConfig(OnnxConfig): | |
torch_onnx_minimum_version = version.parse("1.11") | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
return OrderedDict([("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"})]) | |
def outputs(self) -> Mapping[str, Mapping[int, str]]: | |
if self.task == "image-classification": | |
return OrderedDict([("logits", {0: "batch"})]) | |
else: | |
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})]) | |
def atol_for_validation(self) -> float: | |
return 1e-4 | |